Skip to content

Latest commit

 

History

History

stl10

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

STL-10 Representation Learning with Alignment and Uniformity Losses

Requirements

Python >= 3.6
torch >= 1.5.0
torchvision

Getting Started

  • Training an encoder:

    python main.py

    You may use --gpus to specify multiple GPUs to use, e.g., --gpus 1 3.

    See main.py for more command-line arguments.

  • Evaluating an encoder:

    python linear_eval.py [PATH_TO_ENCODER]

    You may use --gpu to specify the GPU to use, e.g., --gpu 3.

    See linear_eval.py for more command-line arguments.

Reference Validation Accuracy

83.19% using 4 GPUs with default options:

  • AlexNet-variant encoder architecture.
  • Loss: L_align(alpha=2) + L_uniform(t=2).
  • Classification on penultimate layer (fc7) activations.

With 8 GPUs, @sachit-menon kindly reported 83.39%.