-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_finetune.py
179 lines (148 loc) · 7.94 KB
/
model_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
# DeiT: https://github.com/facebookresearch/deit
# --------------------------------------------------------
from functools import partial
# from visualizer import get_local
import torch
import torch.nn as nn
import math
import timm.models.vision_transformer
class VisionTransformer(timm.models.vision_transformer.VisionTransformer):
""" Vision Transformer with support for global average pooling
"""
def __init__(self, global_pool=False, **kwargs):
super(VisionTransformer, self).__init__(**kwargs)
self.global_pool = global_pool
if self.global_pool:
norm_layer = kwargs['norm_layer']
embed_dim = kwargs['embed_dim']
self.fc_norm = norm_layer(embed_dim)
del self.norm # remove the original norm
def forward_no_pooling_features(self, x):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.pos_embed
x = self.pos_drop(x)
for blk in self.blocks:
x = blk(x)
return x
def forward_features(self, x):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.pos_embed
x = self.pos_drop(x)
for blk in self.blocks:
x = blk(x)
if self.global_pool:
x = x[:, 1:, :].mean(dim=1) # global pool without cls token
outcome = self.fc_norm(x)
else:
x = self.norm(x)
outcome = x[:, 0]
return outcome
class VisionTransformerEnsemblePostCrossAttention(nn.Module):
"""
the module is the ensemble model for mae vit fine tune
"""
def __init__(self, image_size_list, **kwargs):
super().__init__()
self.vision_transformer1 = VisionTransformer(img_size=image_size_list[0], **kwargs)
self.vision_transformer2 = VisionTransformer(img_size=image_size_list[1], **kwargs)
self.vision_transformer3 = VisionTransformer(img_size=image_size_list[2], **kwargs)
num_feature = self.vision_transformer1.num_features
self.wq1 = nn.Linear(num_feature, num_feature, bias=False)
self.wq2 = nn.Linear(num_feature, num_feature, bias=False)
self.wq3 = nn.Linear(num_feature, num_feature, bias=False)
self.wq2_1 = nn.Linear(num_feature, num_feature, bias=False)
self.wq2_2 = nn.Linear(num_feature, num_feature, bias=False)
self.wq2_3 = nn.Linear(num_feature, num_feature, bias=False)
self.attn_drop = nn.Dropout(p=0.1)
self.loss_weight = nn.Parameter(torch.ones(3))
def forward_cross_attention(self, v1_feature, v2_feature, v3_feature):
B, N1, C = v1_feature.shape
N2 = v2_feature.shape[1]
N3 = v3_feature.shape[1]
num_heads = 8
head_dim = C // num_heads
scale = head_dim ** -0.5
v1_feature = v1_feature.reshape(B, N1, num_heads, head_dim).permute(0, 2, 1, 3) # [B, num_heads, N1, head_dim]
v2_feature = v2_feature.reshape(B, N2, num_heads, head_dim).permute(0, 2, 1, 3) # [B, num_heads, N2, head_dim]
v3_feature = v3_feature.reshape(B, N3, num_heads, head_dim).permute(0, 2, 1, 3) # [B, num_heads, N3, head_dim]
# v1, v1 self attention
v1_v1_attn = (v1_feature @ v1_feature.transpose(-2, -1)) * scale
v1_v1_attn = v1_v1_attn.softmax(dim=-1)
v1_v1_attn = self.attn_drop(v1_v1_attn) # [B, num_head, N1, N2]
v1_v1_attn_visualize = v1_v1_attn
v1_v1_attn_feature = (v1_v1_attn @ v1_feature).transpose(1, 2).reshape(B, N1,
C) # v1, v2 cross attention
# v1, v2 cross attention
v1_v2_attn = (v1_feature @ v2_feature[:, :, 1:, :].transpose(-2, -1)) * scale
v1_v2_attn = v1_v2_attn.softmax(dim=-1)
v1_v2_attn = self.attn_drop(v1_v2_attn)
v1_v2_attn_visualize = v1_v2_attn
v1_v2_attn_feature = (v1_v2_attn @ v2_feature[:, :, 1:, :]).transpose(1, 2).reshape(B, N1,
C) # v1, v2 cross attention
# v1, v3 cross attention
v1_v3_attn = (v1_feature @ v3_feature[:, :, 1:, :].transpose(-2, -1)) * scale
v1_v3_attn = v1_v3_attn.softmax(dim=-1)
v1_v3_attn = self.attn_drop(v1_v3_attn)
v1_v3_attn_visualize = v1_v3_attn
v1_v3_attn_feature = (v1_v3_attn @ v3_feature[:, :, 1:, :]).transpose(1, 2).reshape(B, N1,
C) # v1, v2 cross attention
fused_feature = v1_v1_attn_feature + v1_v2_attn_feature + v1_v3_attn_feature
return fused_feature
def forward(self, x):
# the input x is list of tensor
v1_feature = self.vision_transformer1.forward_no_pooling_features(x[0]) # [batch_size, dim]
v2_feature = self.vision_transformer2.forward_no_pooling_features(x[1])
v3_feature = self.vision_transformer3.forward_no_pooling_features(x[2])
v1_feature = self.wq1(v1_feature)
v2_feature = self.wq2(v2_feature)
v3_feature = self.wq3(v3_feature)
v1_fused_feature = self.forward_cross_attention(v1_feature, v2_feature, v3_feature)
v2_fused_feature = self.forward_cross_attention(v2_feature, v1_feature, v3_feature)
v3_fused_feature = self.forward_cross_attention(v3_feature, v1_feature, v2_feature)
v2_1_fused_feature = self.wq2_1(v1_fused_feature)
v2_2_fused_feature = self.wq2_2(v2_fused_feature)
v2_3_fused_feature = self.wq2_3(v3_fused_feature)
v1_fused_feature = self.forward_cross_attention(v2_1_fused_feature, v2_2_fused_feature, v2_3_fused_feature)
v2_fused_feature = self.forward_cross_attention(v2_2_fused_feature, v2_1_fused_feature, v2_3_fused_feature)
v3_fused_feature = self.forward_cross_attention(v2_3_fused_feature, v2_1_fused_feature, v2_2_fused_feature)
v1_fused_cls_feature = v1_fused_feature[:, 0]
v2_fused_cls_feature = v2_fused_feature[:, 0]
v3_fused_cls_feature = v3_fused_feature[:, 0]
v1_prob = self.vision_transformer1.head(v1_fused_cls_feature)
v2_prob = self.vision_transformer2.head(v2_fused_cls_feature)
v3_prob = self.vision_transformer3.head(v3_fused_cls_feature)
final_class_prob = [v1_prob, v2_prob, v3_prob]
return final_class_prob
def vit_base_patch16(**kwargs):
model = VisionTransformer(
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def vit_large_patch16(**kwargs):
model = VisionTransformer(
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def vit_huge_patch14(**kwargs):
model = VisionTransformer(
patch_size=14, embed_dim=1280, depth=32, num_heads=16, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def vit_base_patch16_ensemble_post_cross_attention(**kwargs):
model = VisionTransformerEnsemblePostCrossAttention(patch_size=16, embed_dim=768, depth=12, num_heads=12,
mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model