forked from 1adrianb/face-alignment
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfreeze_model.py
54 lines (41 loc) · 2.55 KB
/
freeze_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import os, argparse
import tensorflow as tf
from tensorflow.python.framework import graph_util
dir = os.path.dirname(os.path.realpath(__file__))
#获得完整路径中的目录部分
def freeze_graph(model_folder):
# We retrieve our checkpoint fullpath
checkpoint = tf.train.get_checkpoint_state(model_folder) #根据checkpoint文件(model_folder)找模型文件名
input_checkpoint = checkpoint.model_checkpoint_path #input_checkp将保存最新的tensorflow模型文件的文件路径
# We precise the file fullname of our freezed graph
absolute_model_folder = '/'.join(input_checkpoint.split('/')[:-1]) #input_ckp绝对路径的文件夹部分
output_graph = absolute_model_folder + '/frozen_model.pb' #输出的图
# Before exporting our graph, we need to precise what is our output node
# This is how TF decides what part of the Graph he has to keep and what part it can dump
# NOTE: this variable is plural, because you can have multiple output nodes
output_node_names = 'generate_output/output' #输出模式的名字
# We clear devices to allow TensorFlow to control on which device it will load operations
clear_devices = True #不知道干啥的
# We import the meta graph and retrieve a Saver
saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=clear_devices) #读取元数据
# We retrieve the protobuf graph definition
graph = tf.get_default_graph() #读取图(具体读哪张图啊)
input_graph_def = graph.as_graph_def() #(graph的内部结构)
# We start a session and restore the graph weights
with tf.Session() as sess:
saver.restore(sess, input_checkpoint) #加载参数
# We use a built-in TF helper to export variables to constants
output_graph_def = graph_util.convert_variables_to_constants(
sess, # The session is used to retrieve the weights
input_graph_def, # The graph_def is used to retrieve the nodes
output_node_names.split(",") # The output node names are used to select the usefull nodes
)
# Finally we serialize and dump the output graph to the filesystem
with tf.gfile.GFile(output_graph, 'wb') as f:
f.write(output_graph_def.SerializeToString())
print('%d ops in the final graph.' % len(output_graph_def.node))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model-folder', type=str, help='Model folder to export')
args = parser.parse_args()
freeze_graph(args.model_folder)