forked from cleardusk/3DDFA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·281 lines (229 loc) · 9.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
#!/usr/bin/env python3
# coding: utf-8
import os.path as osp
from pathlib import Path
import numpy as np
import argparse
import time
import logging
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import mobilenet_v1
import torch.backends.cudnn as cudnn
from utils.ddfa import DDFADataset, ToTensorGjz, NormalizeGjz
from utils.ddfa import str2bool, AverageMeter
from utils.io import mkdir
from vdc_loss import VDCLoss
from wpdc_loss import WPDCLoss
# global args (configuration)
args = None
lr = None
arch_choices = ['mobilenet_2', 'mobilenet_1', 'mobilenet_075', 'mobilenet_05', 'mobilenet_025']
def parse_args():
parser = argparse.ArgumentParser(description='3DMM Fitting')
parser.add_argument('-j', '--workers', default=6, type=int)
parser.add_argument('--epochs', default=40, type=int)
parser.add_argument('--start-epoch', default=1, type=int)
parser.add_argument('-b', '--batch-size', default=128, type=int)
parser.add_argument('-vb', '--val-batch-size', default=32, type=int)
parser.add_argument('--base-lr', '--learning-rate', default=0.001, type=float)
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=5e-4, type=float)
parser.add_argument('--print-freq', '-p', default=20, type=int)
parser.add_argument('--resume', default='', type=str, metavar='PATH')
parser.add_argument('--devices-id', default='0,1', type=str)
parser.add_argument('--filelists-train',
default='', type=str)
parser.add_argument('--filelists-val',
default='', type=str)
parser.add_argument('--root', default='')
parser.add_argument('--snapshot', default='', type=str)
parser.add_argument('--log-file', default='output.log', type=str)
parser.add_argument('--log-mode', default='w', type=str)
parser.add_argument('--size-average', default='true', type=str2bool)
parser.add_argument('--num-classes', default=62, type=int)
parser.add_argument('--arch', default='mobilenet_1', type=str,
choices=arch_choices)
parser.add_argument('--frozen', default='false', type=str2bool)
parser.add_argument('--milestones', default='15,25,30', type=str)
parser.add_argument('--task', default='all', type=str)
parser.add_argument('--test_initial', default='false', type=str2bool)
parser.add_argument('--warmup', default=-1, type=int)
parser.add_argument('--param-fp-train',
default='',
type=str)
parser.add_argument('--param-fp-val',
default='')
parser.add_argument('--opt-style', default='resample', type=str) # resample
parser.add_argument('--resample-num', default=132, type=int)
parser.add_argument('--loss', default='vdc', type=str)
global args
args = parser.parse_args()
# some other operations
args.devices_id = [int(d) for d in args.devices_id.split(',')]
args.milestones = [int(m) for m in args.milestones.split(',')]
snapshot_dir = osp.split(args.snapshot)[0]
mkdir(snapshot_dir)
def print_args(args):
for arg in vars(args):
s = arg + ': ' + str(getattr(args, arg))
logging.info(s)
def adjust_learning_rate(optimizer, epoch, milestones=None):
"""Sets the learning rate: milestone is a list/tuple"""
def to(epoch):
if epoch <= args.warmup:
return 1
elif args.warmup < epoch <= milestones[0]:
return 0
for i in range(1, len(milestones)):
if milestones[i - 1] < epoch <= milestones[i]:
return i
return len(milestones)
n = to(epoch)
global lr
lr = args.base_lr * (0.2 ** n)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def save_checkpoint(state, filename='checkpoint.pth.tar'):
torch.save(state, filename)
logging.info(f'Save checkpoint to {filename}')
def train(train_loader, model, criterion, optimizer, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
model.train()
end = time.time()
# loader is batch style
# for i, (input, target) in enumerate(train_loader):
for i, (input, target) in enumerate(train_loader):
target.requires_grad = False
target = target.cuda(non_blocking=True)
output = model(input)
data_time.update(time.time() - end)
if args.loss.lower() == 'vdc':
loss = criterion(output, target)
elif args.loss.lower() == 'wpdc':
loss = criterion(output, target)
elif args.loss.lower() == 'pdc':
loss = criterion(output, target)
else:
raise Exception(f'Unknown loss {args.loss}')
losses.update(loss.item(), input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# log
if i % args.print_freq == 0:
logging.info(f'Epoch: [{epoch}][{i}/{len(train_loader)}]\t'
f'LR: {lr:8f}\t'
f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
# f'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
f'Loss {losses.val:.4f} ({losses.avg:.4f})')
def validate(val_loader, model, criterion, epoch):
model.eval()
end = time.time()
with torch.no_grad():
losses = []
for i, (input, target) in enumerate(val_loader):
# compute output
target.requires_grad = False
target = target.cuda(non_blocking=True)
output = model(input)
loss = criterion(output, target)
losses.append(loss)
elapse = time.time() - end
loss = np.mean(losses)
logging.info(f'Val: [{epoch}][{len(val_loader)}]\t'
f'Loss {loss:.4f}\t'
f'Time {elapse:.3f}')
def main():
parse_args() # parse global argsl
# logging setup
logging.basicConfig(
format='[%(asctime)s] [p%(process)s] [%(pathname)s:%(lineno)d] [%(levelname)s] %(message)s',
level=logging.INFO,
handlers=[
logging.FileHandler(args.log_file, mode=args.log_mode),
logging.StreamHandler()
]
)
print_args(args) # print args
# step1: define the model structure
model = getattr(mobilenet_v1, args.arch)(num_classes=args.num_classes)
torch.cuda.set_device(args.devices_id[0]) # fix bug for `ERROR: all tensors must be on devices[0]`
model = nn.DataParallel(model, device_ids=args.devices_id).cuda() # -> GPU
# step2: optimization: loss and optimization method
# criterion = nn.MSELoss(size_average=args.size_average).cuda()
if args.loss.lower() == 'wpdc':
print(args.opt_style)
criterion = WPDCLoss(opt_style=args.opt_style).cuda()
logging.info('Use WPDC Loss')
elif args.loss.lower() == 'vdc':
criterion = VDCLoss(opt_style=args.opt_style).cuda()
logging.info('Use VDC Loss')
elif args.loss.lower() == 'pdc':
criterion = nn.MSELoss(size_average=args.size_average).cuda()
logging.info('Use PDC loss')
else:
raise Exception(f'Unknown Loss {args.loss}')
optimizer = torch.optim.SGD(model.parameters(),
lr=args.base_lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
nesterov=True)
# step 2.1 resume
if args.resume:
if Path(args.resume).is_file():
logging.info(f'=> loading checkpoint {args.resume}')
checkpoint = torch.load(args.resume, map_location=lambda storage, loc: storage)['state_dict']
# checkpoint = torch.load(args.resume)['state_dict']
model.load_state_dict(checkpoint)
else:
logging.info(f'=> no checkpoint found at {args.resume}')
# step3: data
normalize = NormalizeGjz(mean=127.5, std=128) # may need optimization
train_dataset = DDFADataset(
root=args.root,
filelists=args.filelists_train,
param_fp=args.param_fp_train,
transform=transforms.Compose([ToTensorGjz(), normalize])
)
val_dataset = DDFADataset(
root=args.root,
filelists=args.filelists_val,
param_fp=args.param_fp_val,
transform=transforms.Compose([ToTensorGjz(), normalize])
)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.workers,
shuffle=True, pin_memory=True, drop_last=True)
val_loader = DataLoader(val_dataset, batch_size=args.val_batch_size, num_workers=args.workers,
shuffle=False, pin_memory=True)
# step4: run
cudnn.benchmark = True
if args.test_initial:
logging.info('Testing from initial')
validate(val_loader, model, criterion, args.start_epoch)
for epoch in range(args.start_epoch, args.epochs + 1):
# adjust learning rate
adjust_learning_rate(optimizer, epoch, args.milestones)
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch)
filename = f'{args.snapshot}_checkpoint_epoch_{epoch}.pth.tar'
save_checkpoint(
{
'epoch': epoch,
'state_dict': model.state_dict(),
# 'optimizer': optimizer.state_dict()
},
filename
)
validate(val_loader, model, criterion, epoch)
if __name__ == '__main__':
main()