-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmft_model.py
338 lines (276 loc) · 12.5 KB
/
mft_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# Multimodal Fusion Transformer (MFT) PyTorch Implementation (modified, original code is from https://github.com/AnkurDeria/MFT)
# This is an updated version of MFT PyTorch code for both serial and distributed training
# Link for the original paper is: https://arxiv.org/abs/2203.16952
# All the changes are commented and are mainly to facilitate hypaer parameters to be passed through the main function
# Added both 'Channel' and 'Pixel' tokenization for the other multimodal data (like the LiDAR data stream) in the same code so that we can call it using the parameter 'LiDAR_token_type' from the main function
# Import all the desired packages
from torch.nn import LayerNorm, Linear, Dropout, Softmax
from einops import rearrange, repeat
import copy
from torchsummary import summary
import math
import time
import torchvision.transforms.functional as TF
from torch.nn.parameter import Parameter
import torch.utils.data as dataf
import torch.nn as nn
import torch
import torch.nn.functional as F
from torch import einsum
import random
import numpy as np
import os
import torch.backends.cudnn as cudnn
cudnn.deterministic = True
cudnn.benchmark = False
cudnn.enabled = False
#random_seed = 42
#random.seed(random_seed)
#torch.manual_seed(random_seed)
#torch.cuda.manual_seed_all(random_seed)
# HetConv layer for the HSI data processing
class HetConv(nn.Module):
def __init__(self, in_channels, out_channels, p = 64, g = 64):
super().__init__()
# Groupwise Convolution
self.gwc = nn.Conv2d(in_channels, out_channels, kernel_size=3,groups=g,padding = 1)
# Pointwise Convolution
self.pwc = nn.Conv2d(in_channels, out_channels, kernel_size=1,groups=p)
def forward(self, x):
return self.gwc(x) + self.pwc(x)
# Attention Module in the Tramsformer Encoder
class MCrossAttention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.1, proj_drop=0.1):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.wq = nn.Linear(head_dim, dim , bias=qkv_bias)
self.wk = nn.Linear(head_dim, dim , bias=qkv_bias)
self.wv = nn.Linear(head_dim, dim , bias=qkv_bias)
# self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim * num_heads, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
q = self.wq(x[:, 0:1, ...].reshape(B, 1, self.num_heads, C // self.num_heads)).permute(0, 2, 1, 3) # B1C -> B1H(C/H) -> BH1(C/H)
k = self.wk(x.reshape(B, N, self.num_heads, C // self.num_heads)).permute(0, 2, 1, 3) # BNC -> BNH(C/H) -> BHN(C/H)
v = self.wv(x.reshape(B, N, self.num_heads, C // self.num_heads)).permute(0, 2, 1, 3) # BNC -> BNH(C/H) -> BHN(C/H)
attn = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale
# attn = (q @ k.transpose(-2, -1)) * self.scale # BH1(C/H) @ BH(C/H)N -> BH1N
attn = attn.softmax(dim=-1)
# attn = self.attn_drop(attn)
x = torch.einsum('bhij,bhjd->bhid', attn, v).transpose(1, 2)
# x = (attn @ v).transpose(1, 2)
x = x.reshape(B, 1, C * self.num_heads) # (BH1N @ BHN(C/H)) -> BH1(C/H) -> B1H(C/H) -> B1C
x = self.proj(x)
x = self.proj_drop(x)
return x
# MLP Module in the Tramsformer Encoder
class Mlp(nn.Module):
def __init__(self, dim, mlp_dim):
super().__init__()
self.fc1 = Linear(dim, mlp_dim)
self.fc2 = Linear(mlp_dim, dim)
self.act_fn = nn.GELU()
self.dropout = Dropout(0.1)
self._init_weights()
def _init_weights(self):
nn.init.xavier_uniform_(self.fc1.weight)
nn.init.xavier_uniform_(self.fc2.weight)
nn.init.normal_(self.fc1.bias, std=1e-6)
nn.init.normal_(self.fc2.bias, std=1e-6)
def forward(self, x):
x = self.fc1(x)
x = self.act_fn(x)
x = self.dropout(x)
x = self.fc2(x)
x = self.dropout(x)
return x
# Single Tramsformer Encoder Block that combines the Attention and Mlp layers
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_dim):
super().__init__()
self.hidden_size = dim
self.hidden_dim_size = mlp_dim
self.attention_norm = LayerNorm(dim, eps=1e-6)
self.ffn_norm = LayerNorm(dim, eps=1e-6)
self.ffn = Mlp(dim, mlp_dim)
self.attn = MCrossAttention(dim, num_heads)
def forward(self, x):
h = x
x = self.attention_norm(x)
x= self.attn(x)
x = x + h
h = x
x = self.ffn_norm(x)
x = self.ffn(x)
x = x + h
return x
# Transformer Encoder Block with repetition
class TransformerEncoder(nn.Module):
def __init__(self, dim, num_heads=8, mlp_dim=512, depth=2):
super().__init__()
self.layer = nn.ModuleList()
self.encoder_norm = LayerNorm(dim, eps=1e-6)
for _ in range(depth):
layer = Block(dim, num_heads, mlp_dim)
self.layer.append(copy.deepcopy(layer))
def forward(self, x):
for layer_block in self.layer:
x= layer_block(x)
encoded = self.encoder_norm(x)
return encoded[:,0]
# The Final MFT Implementation with cls from other modalities
class MFT(nn.Module):
def __init__(self, FM, NC, NCLidar, Classes, ntokens, token_type, num_heads, mlp_dim, depth):
super().__init__()
#self.HSIOnly = HSIOnly
self.ntokens = ntokens
self.FM = FM
self.conv5 = nn.Sequential(
nn.Conv3d(1, 8, (9, 3, 3), padding=(0,1,1), stride = 1),
nn.BatchNorm3d(8),
#nn.GroupNorm(4,8),
nn.ReLU()
)
self.conv6 = nn.Sequential(
HetConv(8 * (NC - 8), FM*4,
p = 1,
g = (FM*4)//4 if (8 * (NC - 8))%FM == 0 else (FM*4)//8,
),
nn.BatchNorm2d(FM*4),
#nn.GroupNorm(4,FM*4),
nn.ReLU()
)
self.lidarConv = nn.Sequential(
nn.Conv2d(NCLidar,FM*4,3,1,1),
nn.BatchNorm2d(FM*4),
nn.GELU()
)
self.ca = TransformerEncoder(FM*4, num_heads, mlp_dim, depth)
self.out3 = nn.Linear(FM*4 , Classes)
#self.cls_token = nn.Parameter(torch.zeros(1, 1, FM*4))
self.position_embeddings = nn.Parameter(torch.randn(1, ntokens + 1, FM*4))
self.dropout = nn.Dropout(0.1)
torch.nn.init.xavier_uniform_(self.out3.weight)
torch.nn.init.normal_(self.out3.bias, std=1e-6)
self.token_wA = nn.Parameter(torch.empty(1, ntokens, FM*4),
requires_grad=True) # Tokenization parameters
torch.nn.init.xavier_normal_(self.token_wA)
self.token_wV = nn.Parameter(torch.empty(1, FM*4, FM*4),
requires_grad=True) # Tokenization parameters
torch.nn.init.xavier_normal_(self.token_wV)
if token_type == "pixel":
self.token_wA_L = nn.Parameter(torch.empty(1, 1, 1),
requires_grad=True) # Tokenization parameters
torch.nn.init.xavier_normal_(self.token_wA_L)
self.token_wV_L = nn.Parameter(torch.empty(1, 1, FM*4),
requires_grad=True) # Tokenization parameters
torch.nn.init.xavier_normal_(self.token_wV_L)
elif token_type == "channel":
self.token_wA_L = nn.Parameter(torch.empty(1, 1, FM*4),
requires_grad=True) # Tokenization parameters
torch.nn.init.xavier_normal_(self.token_wA_L)
self.token_wV_L = nn.Parameter(torch.empty(1, FM*4, FM*4),
requires_grad=True) # Tokenization parameters
torch.nn.init.xavier_normal_(self.token_wV_L)
else:
raise ValueError(
print("unknown Lidar_token_type {token_type}, acceptable pixel, channel")
)
def forward(self, x1, x2):
x1 = x1.reshape(x1.shape[0],-1,11,11)
x1 = x1.unsqueeze(1)
x1 = self.conv5(x1)
x1 = x1.reshape(x1.shape[0],-1,11,11)
x1 = self.conv6(x1)
x1 = x1.flatten(2)
x1 = x1.transpose(-1, -2)
wa = self.token_wA.expand(x1.shape[0],-1,-1)
wa = rearrange(wa, 'b h w -> b w h') # Transpose
A = torch.einsum('bij,bjk->bik', x1, wa)
A = rearrange(A, 'b h w -> b w h') # Transpose
A = A.softmax(dim=-1)
wv = self.token_wV.expand(x1.shape[0],-1,-1)
VV = torch.einsum('bij,bjk->bik', x1, wv)
T = torch.einsum('bij,bjk->bik', A, VV)
x2 = x2.reshape(x2.shape[0],-1,11,11)
x2 = self.lidarConv(x2)
x2 = x2.reshape(x2.shape[0],-1,11**2)
x2 = x2.transpose(-1, -2)
wa_L = self.token_wA_L.expand(x2.shape[0],-1,-1)
wa_L = rearrange(wa_L, 'b h w -> b w h') # Transpose
A_L = torch.einsum('bij,bjk->bik', x2, wa_L)
A_L = rearrange(A_L, 'b h w -> b w h') # Transpose
A_L = A_L.softmax(dim=-1)
wv_L = self.token_wV_L.expand(x2.shape[0],-1,-1)
VV_L = torch.einsum('bij,bjk->bik', x2, wv_L)
L = torch.einsum('bij,bjk->bik', A_L, VV_L)
x = torch.cat((L, T), dim = 1) #[b,n+1,dim]
x = x + self.position_embeddings
x = self.dropout(x)
x = self.ca(x)
x = x.reshape(x.shape[0],-1)
out3 = self.out3(x)
return out3
# The Final MFT Implementation with cls from random
class Transformer(nn.Module):
def __init__(self, FM, NC, Classes, ntokens, num_heads, mlp_dim, depth):
super().__init__()
#self.HSIOnly = HSIOnly
self.ntokens = ntokens
self.FM = FM
self.conv5 = nn.Sequential(
nn.Conv3d(1, 8, (9, 3, 3), padding=(0,1,1), stride = 1),
#nn.BatchNorm3d(8),
nn.GroupNorm(4,8),
nn.ReLU()
)
self.conv6 = nn.Sequential(
HetConv(8 * (NC - 8), FM*4,
p = 1,
g = (FM*4)//4 if (8 * (NC - 8))%FM == 0 else (FM*4)//8,
),
#nn.BatchNorm2d(FM*4),
nn.GroupNorm(4,FM*4),
nn.ReLU()
)
self.last_BandSize = NC//2//2//2
self.ca = TransformerEncoder(FM*4, num_heads, mlp_dim, depth)
self.out3 = nn.Linear(FM*4 , Classes)
self.cls_token = nn.Parameter(torch.zeros(1, 1, FM*4))
self.position_embeddings = nn.Parameter(torch.randn(1, ntokens + 1, FM*4))
self.dropout = nn.Dropout(0.1)
torch.nn.init.xavier_uniform_(self.out3.weight)
torch.nn.init.normal_(self.out3.bias, std=1e-6)
self.token_wA = nn.Parameter(torch.empty(1, ntokens, FM*4),
requires_grad=True) # Tokenization parameters
torch.nn.init.xavier_normal_(self.token_wA)
self.token_wV = nn.Parameter(torch.empty(1, FM*4, FM*4),
requires_grad=True) # Tokenization parameters
torch.nn.init.xavier_normal_(self.token_wV)
def forward(self, x1):
x1 = x1.reshape(x1.shape[0],-1,11,11)
x1 = x1.unsqueeze(1)
x1 = self.conv5(x1)
x1 = x1.reshape(x1.shape[0],-1,11,11)
x1 = self.conv6(x1)
x1 = x1.flatten(2)
x1 = x1.transpose(-1, -2)
wa = self.token_wA.expand(x1.shape[0],-1,-1)
wa = rearrange(wa, 'b h w -> b w h') # Transpose
A = torch.einsum('bij,bjk->bik', x1, wa)
A = rearrange(A, 'b h w -> b w h') # Transpose
A = A.softmax(dim=-1)
wv = self.token_wV.expand(x1.shape[0],-1,-1)
VV = torch.einsum('bij,bjk->bik', x1, wv)
T = torch.einsum('bij,bjk->bik', A, VV)
L = self.cls_token.repeat(x1.shape[0], 1, 1)
x = torch.cat((L, T), dim = 1) #[b,n+1,dim]
embeddings = x + self.position_embeddings
embeddings = self.dropout(embeddings)
x = self.ca(embeddings)
x = x.reshape(x.shape[0],-1)
out3 = self.out3(x)
return out3