-
Notifications
You must be signed in to change notification settings - Fork 9
/
embedding_gcnn_attention_model.py
250 lines (195 loc) · 12.7 KB
/
embedding_gcnn_attention_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
os.environ['KERAS_BACKEND'] = 'tensorflow'
# os.environ['CUDA_VISIBLE_DEVICES'] = "2,3"
from keras import regularizers
from keras.optimizers import SGD
from i3d_inception import Inception_Inflated3d, conv3d_bn
from keras.layers import Activation, concatenate, Dense, Flatten, Dropout, Reshape, Input, Add, RepeatVector, Permute
from keras.layers import AveragePooling3D, Lambda, Merge
from keras import backend as K
from keras_dgl.layers import MultiGraphCNN
from keras.models import Model
import keras
from keras.layers.normalization import BatchNormalization
from keras.layers import Conv2D, MaxPooling2D
def inflate_dense_ST(x):
a = RepeatVector(1024)(x)
a = Permute((2,1), input_shape=(98,1024))(a)
a = Reshape((2,7,7,1024))(a)
return a
def inflate_dense_spatial(x):
a = RepeatVector(2*1024)(x)
a = Permute((2,1), input_shape=(49,2*1024))(a)
a = Reshape((2,7,7,1024))(a)
return a
def inflate_dense_temporal(x):
a = RepeatVector(49*1024)(x)
a = Permute((2,1), input_shape=(2,49*1024))(a)
a = Reshape((2,7,7,1024))(a)
return a
def attention_reg(weight_mat):
return 0.00001*K.square((1-K.sum(weight_mat)))
def manhattan_distance(A,B):
return K.sum( K.abs( A-B),axis=1,keepdims=True)
class i3d_modified:
def __init__(self, weights='rgb_imagenet_and_kinetics'):
self.model = Inception_Inflated3d(include_top=True, weights=weights)
def i3d_flattened(self, num_classes=60):
i3d = Model(inputs=self.model.input, outputs=self.model.get_layer(index=-4).output)
x = conv3d_bn(i3d.output, num_classes, 1, 1, 1, padding='same', use_bias=True, use_activation_fn=False,
use_bn=False, name='Conv3d_6a_1x1')
num_frames_remaining = int(x.shape[1])
x = Flatten()(x)
predictions = Dense(num_classes, activation='softmax', kernel_regularizer=regularizers.l2(0.01),
activity_regularizer=regularizers.l1(0.01))(x)
new_model = Model(inputs=i3d.input, outputs=predictions)
# for layer in i3d.layers:
# layer.trainable = False
return new_model
def GCNN_skeleton_t16(num_nodes, num_features, graph_conv_filters_shape1, graph_conv_filters_shape2, num_filters, num_classes, n_neuron, n_dropout, timesteps):
print('Build GCNN')
X_input_t1 = Input(shape=(num_nodes, num_features))
X_input_t2 = Input(shape=(num_nodes, num_features))
X_input_t3 = Input(shape=(num_nodes, num_features))
X_input_t4 = Input(shape=(num_nodes, num_features))
X_input_t5 = Input(shape=(num_nodes, num_features))
X_input_t6 = Input(shape=(num_nodes, num_features))
X_input_t7 = Input(shape=(num_nodes, num_features))
X_input_t8 = Input(shape=(num_nodes, num_features))
X_input_t9 = Input(shape=(num_nodes, num_features))
X_input_t10 = Input(shape=(num_nodes, num_features))
X_input_t11 = Input(shape=(num_nodes, num_features))
X_input_t12 = Input(shape=(num_nodes, num_features))
X_input_t13 = Input(shape=(num_nodes, num_features))
X_input_t14 = Input(shape=(num_nodes, num_features))
X_input_t15 = Input(shape=(num_nodes, num_features))
X_input_t16 = Input(shape=(num_nodes, num_features))
X_input = Input(shape=(timesteps, num_nodes, 3))
graph_conv_filters_input = Input(shape=(graph_conv_filters_shape1, graph_conv_filters_shape2))
output_t1 = MultiGraphCNN(n_neuron, num_filters, activation='elu')([X_input_t1, graph_conv_filters_input])
output_t1 = Dropout(n_dropout)(output_t1)
output_t2 = MultiGraphCNN(n_neuron, num_filters, activation='elu')([X_input_t2, graph_conv_filters_input])
output_t2 = Dropout(n_dropout)(output_t2)
output1 = Lambda(lambda x: K.expand_dims(x, axis=1))(output_t1) # adding a node invariant layer to make sure output does not depends upon the node order in a graph.
output2 = Lambda(lambda x: K.expand_dims(x, axis=1))(output_t2)
output_t3 = MultiGraphCNN(n_neuron, num_filters, activation='elu')([X_input_t3, graph_conv_filters_input])
output_t3 = Dropout(n_dropout)(output_t3)
output_t4 = MultiGraphCNN(n_neuron, num_filters, activation='elu')([X_input_t4, graph_conv_filters_input])
output_t4 = Dropout(n_dropout)(output_t4)
output3 = Lambda(lambda x: K.expand_dims(x, axis=1))(output_t3) # adding a node invariant layer to make sure output does not depends upon the node order in a graph.
output4 = Lambda(lambda x: K.expand_dims(x, axis=1))(output_t4)
output_t5 = MultiGraphCNN(n_neuron, num_filters, activation='elu')([X_input_t5, graph_conv_filters_input])
output_t5 = Dropout(n_dropout)(output_t5)
output_t6 = MultiGraphCNN(n_neuron, num_filters, activation='elu')([X_input_t6, graph_conv_filters_input])
output_t6 = Dropout(n_dropout)(output_t6)
output5 = Lambda(lambda x: K.expand_dims(x, axis=1))(
output_t5) # adding a node invariant layer to make sure output does not depends upon the node order in a graph.
output6 = Lambda(lambda x: K.expand_dims(x, axis=1))(output_t6)
output_t7 = MultiGraphCNN(n_neuron, num_filters, activation='elu')([X_input_t7, graph_conv_filters_input])
output_t7 = Dropout(n_dropout)(output_t7)
output_t8 = MultiGraphCNN(n_neuron, num_filters, activation='elu')([X_input_t8, graph_conv_filters_input])
output_t8 = Dropout(n_dropout)(output_t8)
output7 = Lambda(lambda x: K.expand_dims(x, axis=1))(
output_t7) # adding a node invariant layer to make sure output does not depends upon the node order in a graph.
output8 = Lambda(lambda x: K.expand_dims(x, axis=1))(output_t8)
output_t9 = MultiGraphCNN(n_neuron, num_filters, activation='elu')([X_input_t9, graph_conv_filters_input])
output_t9 = Dropout(n_dropout)(output_t9)
output_t10 = MultiGraphCNN(n_neuron, num_filters, activation='elu')([X_input_t10, graph_conv_filters_input])
output_t10 = Dropout(n_dropout)(output_t10)
output9 = Lambda(lambda x: K.expand_dims(x, axis=1))(
output_t9) # adding a node invariant layer to make sure output does not depends upon the node order in a graph.
output10 = Lambda(lambda x: K.expand_dims(x, axis=1))(output_t10)
output_t11 = MultiGraphCNN(n_neuron, num_filters, activation='elu')([X_input_t11, graph_conv_filters_input])
output_t11 = Dropout(n_dropout)(output_t11)
output_t12 = MultiGraphCNN(n_neuron, num_filters, activation='elu')([X_input_t12, graph_conv_filters_input])
output_t12 = Dropout(n_dropout)(output_t12)
output11 = Lambda(lambda x: K.expand_dims(x, axis=1))(
output_t11) # adding a node invariant layer to make sure output does not depends upon the node order in a graph.
output12 = Lambda(lambda x: K.expand_dims(x, axis=1))(output_t12)
output_t13 = MultiGraphCNN(n_neuron, num_filters, activation='elu')([X_input_t13, graph_conv_filters_input])
output_t13 = Dropout(n_dropout)(output_t13)
output_t14 = MultiGraphCNN(n_neuron, num_filters, activation='elu')([X_input_t14, graph_conv_filters_input])
output_t14 = Dropout(n_dropout)(output_t14)
output13 = Lambda(lambda x: K.expand_dims(x, axis=1))(
output_t13) # adding a node invariant layer to make sure output does not depends upon the node order in a graph.
output14 = Lambda(lambda x: K.expand_dims(x, axis=1))(output_t14)
output_t15 = MultiGraphCNN(n_neuron, num_filters, activation='elu')([X_input_t15, graph_conv_filters_input])
output_t15 = Dropout(n_dropout)(output_t15)
output_t16 = MultiGraphCNN(n_neuron, num_filters, activation='elu')([X_input_t16, graph_conv_filters_input])
output_t16 = Dropout(n_dropout)(output_t16)
output15 = Lambda(lambda x: K.expand_dims(x, axis=1))(
output_t15) # adding a node invariant layer to make sure output does not depends upon the node order in a graph.
output16 = Lambda(lambda x: K.expand_dims(x, axis=1))(output_t16)
output = keras.layers.Concatenate(axis=1)(
[output1, output2, output3, output4, output5, output6, output7, output8, output9,
output10, output11, output12, output13, output14, output15, output16])
output = keras.layers.Concatenate()([output, X_input])
out = BatchNormalization()(output)
out = Conv2D(64, (3, 3), activation='relu', padding='same')(out)
#out = MaxPooling2D(pool_size=(2,2))(out)
out = BatchNormalization()(out)
out = Conv2D(64, (3, 3), activation='relu', padding='same')(out)
out = MaxPooling2D(pool_size=(2, 2))(out)
out = BatchNormalization()(out)
out = Conv2D(128, (3, 3), activation='relu', padding='same')(out)
out = MaxPooling2D(pool_size=(2, 2))(out)
out = BatchNormalization()(out)
out = Dropout(0.5)(out)
out = Flatten()(out)
out_new = Dense(256, activation='relu')(out)
out_new = Dense(128, activation='relu')(out_new)
out_new = Dropout(n_dropout, name='gcnn_out')(out_new)
#output_final = Dense(num_classes, activation='softmax')(out_new)
model = Model(inputs=[X_input_t1, X_input_t2, X_input_t3, X_input_t4, X_input_t5, X_input_t6, X_input_t7,
X_input_t8, X_input_t9, X_input_t10, X_input_t11, X_input_t12, X_input_t13, X_input_t14,
X_input_t15, X_input_t16, X_input, graph_conv_filters_input], outputs=out_new)
return model
def embed_model_spatio_temporal_gcnn(n_neuron, timesteps, num_nodes, num_features,
graph_conv_filters_shape1, graph_conv_filters_shape2,
num_filters, num_classes, n_dropout, protocol):
i3d = i3d_modified(weights = 'rgb_imagenet_and_kinetics')
model_branch = i3d.i3d_flattened(num_classes = num_classes)
'''
if protocol == 'CS': # to be replaced with the values in the yaml file
model_branch.load_weights('/data/stars/user/sdas/PhD_work/STA_appearance/NTU_CS/i3d/weights_ntu_aug_4/epoch_7.hdf5')
else:
model_branch.load_weights('/data/stars/user/sdas/PhD_work/CVPR20/NTU_120/I3D/weights_ntu_set_i3d_full_body/epoch_12.hdf5')
'''
optim = SGD(lr=0.01, momentum=0.9)
model_branch.compile(loss='categorical_crossentropy', optimizer=optim, metrics=['accuracy'])
print('Build model...')
model_inputs=[]
model_gcnn = GCNN_skeleton_t16(num_nodes, num_features, graph_conv_filters_shape1,
graph_conv_filters_shape2, num_filters, num_classes,
n_neuron, n_dropout, timesteps)
z1 = Dense(256, activation='tanh', name='z1_layer', trainable=True)(model_gcnn.get_layer('gcnn_out').output)
z2 = Dense(128, activation='tanh', name='z2_layer', trainable=True)(model_gcnn.get_layer('gcnn_out').output)
fc_main_spatial = Dense(49, activity_regularizer=attention_reg, kernel_initializer='zeros', bias_initializer='zeros',
activation='sigmoid', trainable=True, name='dense_spatial')(z1)
fc_main_temporal = Dense(2, activity_regularizer=attention_reg, kernel_initializer='zeros',
bias_initializer='zeros',
activation='softmax', trainable=True, name='dense_temporal')(z2)
atten_mask_spatial = keras.layers.core.Lambda(inflate_dense_spatial, output_shape=(2, 7, 7, 1024))(fc_main_spatial)
atten_mask_temporal = keras.layers.core.Lambda(inflate_dense_temporal, output_shape=(2, 7, 7, 1024))(fc_main_temporal)
atten_mask = keras.layers.Multiply()([atten_mask_spatial, atten_mask_temporal])
for l in model_branch.layers:
l.trainable = True
for layer in model_gcnn.layers:
layer.trainable = True
for i in model_gcnn.input:
model_inputs.append(i)
model_inputs.append(model_branch.input)
flatten_video = Flatten(name='flatten_video')(model_branch.get_layer('Mixed_5c').output)
embed_video = Dense(256, activation='sigmoid', trainable=True, name='dense_video')(flatten_video)
embed_skeleton = Dense(256, activation='sigmoid', trainable=True, name='dense_skeleton')(fc_main_spatial)
embed_output = Merge(mode=lambda x: manhattan_distance(x[0], x[1]),
output_shape=lambda inp_shp: (inp_shp[0][0], 1), name='embed_output')([embed_video, embed_skeleton])
multiplied_features = keras.layers.Multiply()([atten_mask, model_branch.get_layer('Mixed_5c').output])
added_features = keras.layers.Add()([multiplied_features, model_branch.get_layer('Mixed_5c').output])
x = AveragePooling3D((2, 7, 7), strides=(1, 1, 1), padding='valid', name='global_avg_pool'+'second')(added_features)
x = Dropout(n_dropout)(x)
x = conv3d_bn(x, num_classes, 1, 1, 1, padding='same', use_bias=True, use_activation_fn=False, use_bn=False, name='Conv3d_6a_1x1'+'second')
x = Flatten(name='flatten'+'second')(x)
predictions = Dense(num_classes, activation='softmax', name='action_output')(x)
model = Model(inputs=model_inputs, outputs=[predictions, embed_output], name = 'spatial_temporal_attention')
return model