forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pb_constraint.cc
1136 lines (1039 loc) · 40.7 KB
/
pb_constraint.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/sat/pb_constraint.h"
#include <utility>
#include "absl/strings/str_format.h"
#include "ortools/base/strong_vector.h"
#include "ortools/base/thorough_hash.h"
#include "ortools/util/saturated_arithmetic.h"
namespace operations_research {
namespace sat {
namespace {
bool LiteralComparator(const LiteralWithCoeff& a, const LiteralWithCoeff& b) {
return a.literal.Index() < b.literal.Index();
}
bool CoeffComparator(const LiteralWithCoeff& a, const LiteralWithCoeff& b) {
if (a.coefficient == b.coefficient) {
return a.literal.Index() < b.literal.Index();
}
return a.coefficient < b.coefficient;
}
} // namespace
bool ComputeBooleanLinearExpressionCanonicalForm(
std::vector<LiteralWithCoeff>* cst, Coefficient* bound_shift,
Coefficient* max_value) {
// Note(user): For some reason, the IntType checking doesn't work here ?! that
// is a bit worrying, but the code seems to behave correctly.
*bound_shift = 0;
*max_value = 0;
// First, sort by literal to remove duplicate literals.
// This also remove term with a zero coefficient.
std::sort(cst->begin(), cst->end(), LiteralComparator);
int index = 0;
LiteralWithCoeff* representative = nullptr;
for (int i = 0; i < cst->size(); ++i) {
const LiteralWithCoeff current = (*cst)[i];
if (current.coefficient == 0) continue;
if (representative != nullptr &&
current.literal.Variable() == representative->literal.Variable()) {
if (current.literal == representative->literal) {
if (!SafeAddInto(current.coefficient, &(representative->coefficient))) {
return false;
}
} else {
// Here current_literal is equal to (1 - representative).
if (!SafeAddInto(-current.coefficient,
&(representative->coefficient))) {
return false;
}
if (!SafeAddInto(-current.coefficient, bound_shift)) return false;
}
} else {
if (representative != nullptr && representative->coefficient == 0) {
--index;
}
(*cst)[index] = current;
representative = &((*cst)[index]);
++index;
}
}
if (representative != nullptr && representative->coefficient == 0) {
--index;
}
cst->resize(index);
// Then, make all coefficients positive by replacing a term "-c x" into
// "c(1-x) - c" which is the same as "c(not x) - c".
for (int i = 0; i < cst->size(); ++i) {
const LiteralWithCoeff current = (*cst)[i];
if (current.coefficient < 0) {
if (!SafeAddInto(-current.coefficient, bound_shift)) return false;
(*cst)[i].coefficient = -current.coefficient;
(*cst)[i].literal = current.literal.Negated();
}
if (!SafeAddInto((*cst)[i].coefficient, max_value)) return false;
}
// Finally sort by increasing coefficients.
std::sort(cst->begin(), cst->end(), CoeffComparator);
DCHECK_GE(*max_value, 0);
return true;
}
bool ApplyLiteralMapping(
const absl::StrongVector<LiteralIndex, LiteralIndex>& mapping,
std::vector<LiteralWithCoeff>* cst, Coefficient* bound_shift,
Coefficient* max_value) {
int index = 0;
Coefficient shift_due_to_fixed_variables(0);
for (const LiteralWithCoeff& entry : *cst) {
if (mapping[entry.literal.Index()] >= 0) {
(*cst)[index] = LiteralWithCoeff(Literal(mapping[entry.literal.Index()]),
entry.coefficient);
++index;
} else if (mapping[entry.literal.Index()] == kTrueLiteralIndex) {
if (!SafeAddInto(-entry.coefficient, &shift_due_to_fixed_variables)) {
return false;
}
} else {
// Nothing to do if the literal is false.
DCHECK_EQ(mapping[entry.literal.Index()], kFalseLiteralIndex);
}
}
cst->resize(index);
if (cst->empty()) {
*bound_shift = shift_due_to_fixed_variables;
*max_value = 0;
return true;
}
const bool result =
ComputeBooleanLinearExpressionCanonicalForm(cst, bound_shift, max_value);
if (!SafeAddInto(shift_due_to_fixed_variables, bound_shift)) return false;
return result;
}
// TODO(user): Also check for no duplicates literals + unit tests.
bool BooleanLinearExpressionIsCanonical(
const std::vector<LiteralWithCoeff>& cst) {
Coefficient previous(1);
for (LiteralWithCoeff term : cst) {
if (term.coefficient < previous) return false;
previous = term.coefficient;
}
return true;
}
// TODO(user): Use more complex simplification like dividing by the gcd of
// everyone and using less different coefficients if possible.
void SimplifyCanonicalBooleanLinearConstraint(
std::vector<LiteralWithCoeff>* cst, Coefficient* rhs) {
// Replace all coefficient >= rhs by rhs + 1 (these literal must actually be
// false). Note that the linear sum of literals remains canonical.
//
// TODO(user): It is probably better to remove these literals and have other
// constraint setting them to false from the symmetry finder perspective.
for (LiteralWithCoeff& x : *cst) {
if (x.coefficient > *rhs) x.coefficient = *rhs + 1;
}
}
Coefficient ComputeCanonicalRhs(Coefficient upper_bound,
Coefficient bound_shift,
Coefficient max_value) {
Coefficient rhs = upper_bound;
if (!SafeAddInto(bound_shift, &rhs)) {
if (bound_shift > 0) {
// Positive overflow. The constraint is trivially true.
// This is because the canonical linear expression is in [0, max_value].
return max_value;
} else {
// Negative overflow. The constraint is infeasible.
return Coefficient(-1);
}
}
if (rhs < 0) return Coefficient(-1);
return std::min(max_value, rhs);
}
Coefficient ComputeNegatedCanonicalRhs(Coefficient lower_bound,
Coefficient bound_shift,
Coefficient max_value) {
// The new bound is "max_value - (lower_bound + bound_shift)", but we must
// pay attention to possible overflows.
Coefficient shifted_lb = lower_bound;
if (!SafeAddInto(bound_shift, &shifted_lb)) {
if (bound_shift > 0) {
// Positive overflow. The constraint is infeasible.
return Coefficient(-1);
} else {
// Negative overflow. The constraint is trivialy satisfiable.
return max_value;
}
}
if (shifted_lb <= 0) {
// If shifted_lb <= 0 then the constraint is trivialy satisfiable. We test
// this so we are sure that max_value - shifted_lb doesn't overflow below.
return max_value;
}
return max_value - shifted_lb;
}
bool CanonicalBooleanLinearProblem::AddLinearConstraint(
bool use_lower_bound, Coefficient lower_bound, bool use_upper_bound,
Coefficient upper_bound, std::vector<LiteralWithCoeff>* cst) {
// Canonicalize the linear expression of the constraint.
Coefficient bound_shift;
Coefficient max_value;
if (!ComputeBooleanLinearExpressionCanonicalForm(cst, &bound_shift,
&max_value)) {
return false;
}
if (use_upper_bound) {
const Coefficient rhs =
ComputeCanonicalRhs(upper_bound, bound_shift, max_value);
if (!AddConstraint(*cst, max_value, rhs)) return false;
}
if (use_lower_bound) {
// We transform the constraint into an upper-bounded one.
for (int i = 0; i < cst->size(); ++i) {
(*cst)[i].literal = (*cst)[i].literal.Negated();
}
const Coefficient rhs =
ComputeNegatedCanonicalRhs(lower_bound, bound_shift, max_value);
if (!AddConstraint(*cst, max_value, rhs)) return false;
}
return true;
}
bool CanonicalBooleanLinearProblem::AddConstraint(
const std::vector<LiteralWithCoeff>& cst, Coefficient max_value,
Coefficient rhs) {
if (rhs < 0) return false; // Trivially unsatisfiable.
if (rhs >= max_value) return true; // Trivially satisfiable.
constraints_.emplace_back(cst.begin(), cst.end());
rhs_.push_back(rhs);
SimplifyCanonicalBooleanLinearConstraint(&constraints_.back(), &rhs_.back());
return true;
}
void MutableUpperBoundedLinearConstraint::ClearAndResize(int num_variables) {
if (terms_.size() != num_variables) {
terms_.assign(num_variables, Coefficient(0));
non_zeros_.ClearAndResize(BooleanVariable(num_variables));
rhs_ = 0;
max_sum_ = 0;
} else {
ClearAll();
}
}
void MutableUpperBoundedLinearConstraint::ClearAll() {
// TODO(user): We could be more efficient and have only one loop here.
for (BooleanVariable var : non_zeros_.PositionsSetAtLeastOnce()) {
terms_[var] = Coefficient(0);
}
non_zeros_.ClearAll();
rhs_ = 0;
max_sum_ = 0;
}
// TODO(user): Also reduce the trivially false literal when coeff > rhs_ ?
void MutableUpperBoundedLinearConstraint::ReduceCoefficients() {
CHECK_LT(rhs_, max_sum_) << "Trivially sat.";
Coefficient removed_sum(0);
const Coefficient bound = max_sum_ - rhs_;
for (BooleanVariable var : PossibleNonZeros()) {
const Coefficient diff = GetCoefficient(var) - bound;
if (diff > 0) {
removed_sum += diff;
terms_[var] = (terms_[var] > 0) ? bound : -bound;
}
}
rhs_ -= removed_sum;
max_sum_ -= removed_sum;
DCHECK_EQ(max_sum_, ComputeMaxSum());
}
std::string MutableUpperBoundedLinearConstraint::DebugString() {
std::string result;
for (BooleanVariable var : PossibleNonZeros()) {
if (!result.empty()) result += " + ";
result += absl::StrFormat("%d[%s]", GetCoefficient(var).value(),
GetLiteral(var).DebugString());
}
result += absl::StrFormat(" <= %d", rhs_.value());
return result;
}
// TODO(user): Keep this for DCHECK(), but maintain the slack incrementally
// instead of recomputing it.
Coefficient MutableUpperBoundedLinearConstraint::ComputeSlackForTrailPrefix(
const Trail& trail, int trail_index) const {
Coefficient activity(0);
for (BooleanVariable var : PossibleNonZeros()) {
if (GetCoefficient(var) == 0) continue;
if (trail.Assignment().LiteralIsTrue(GetLiteral(var)) &&
trail.Info(var).trail_index < trail_index) {
activity += GetCoefficient(var);
}
}
return rhs_ - activity;
}
Coefficient MutableUpperBoundedLinearConstraint::
ReduceCoefficientsAndComputeSlackForTrailPrefix(const Trail& trail,
int trail_index) {
Coefficient activity(0);
Coefficient removed_sum(0);
const Coefficient bound = max_sum_ - rhs_;
for (BooleanVariable var : PossibleNonZeros()) {
if (GetCoefficient(var) == 0) continue;
const Coefficient diff = GetCoefficient(var) - bound;
if (trail.Assignment().LiteralIsTrue(GetLiteral(var)) &&
trail.Info(var).trail_index < trail_index) {
if (diff > 0) {
removed_sum += diff;
terms_[var] = (terms_[var] > 0) ? bound : -bound;
}
activity += GetCoefficient(var);
} else {
// Because we assume the slack (rhs - activity) to be negative, we have
// coeff + rhs - max_sum_ <= coeff + rhs - (activity + coeff)
// <= slack
// < 0
CHECK_LE(diff, 0);
}
}
rhs_ -= removed_sum;
max_sum_ -= removed_sum;
DCHECK_EQ(max_sum_, ComputeMaxSum());
return rhs_ - activity;
}
void MutableUpperBoundedLinearConstraint::ReduceSlackTo(
const Trail& trail, int trail_index, Coefficient initial_slack,
Coefficient target) {
// Positive slack.
const Coefficient slack = initial_slack;
DCHECK_EQ(slack, ComputeSlackForTrailPrefix(trail, trail_index));
CHECK_LE(target, slack);
CHECK_GE(target, 0);
// This is not stricly needed, but true in our use case:
// The variable assigned at trail_index was causing a conflict.
const Coefficient coeff = GetCoefficient(trail[trail_index].Variable());
CHECK_LT(slack, coeff);
// Nothing to do if the slack is already target.
if (slack == target) return;
// Applies the algorithm described in the .h
const Coefficient diff = slack - target;
rhs_ -= diff;
for (BooleanVariable var : PossibleNonZeros()) {
if (GetCoefficient(var) == 0) continue;
if (trail.Assignment().LiteralIsTrue(GetLiteral(var)) &&
trail.Info(var).trail_index < trail_index) {
continue;
}
if (GetCoefficient(var) > diff) {
terms_[var] = (terms_[var] > 0) ? terms_[var] - diff : terms_[var] + diff;
max_sum_ -= diff;
} else {
max_sum_ -= GetCoefficient(var);
terms_[var] = 0;
}
}
DCHECK_EQ(max_sum_, ComputeMaxSum());
}
void MutableUpperBoundedLinearConstraint::CopyIntoVector(
std::vector<LiteralWithCoeff>* output) {
output->clear();
for (BooleanVariable var : non_zeros_.PositionsSetAtLeastOnce()) {
const Coefficient coeff = GetCoefficient(var);
if (coeff != 0) {
output->push_back(LiteralWithCoeff(GetLiteral(var), GetCoefficient(var)));
}
}
std::sort(output->begin(), output->end(), CoeffComparator);
}
Coefficient MutableUpperBoundedLinearConstraint::ComputeMaxSum() const {
Coefficient result(0);
for (BooleanVariable var : non_zeros_.PositionsSetAtLeastOnce()) {
result += GetCoefficient(var);
}
return result;
}
UpperBoundedLinearConstraint::UpperBoundedLinearConstraint(
const std::vector<LiteralWithCoeff>& cst)
: is_marked_for_deletion_(false),
is_learned_(false),
first_reason_trail_index_(-1),
activity_(0.0) {
DCHECK(!cst.empty());
DCHECK(std::is_sorted(cst.begin(), cst.end(), CoeffComparator));
literals_.reserve(cst.size());
// Reserve the space for coeffs_ and starts_ (it is slightly more efficient).
{
int size = 0;
Coefficient prev(0); // Ignore initial zeros.
for (LiteralWithCoeff term : cst) {
if (term.coefficient != prev) {
prev = term.coefficient;
++size;
}
}
coeffs_.reserve(size);
starts_.reserve(size + 1);
}
Coefficient prev(0);
for (LiteralWithCoeff term : cst) {
if (term.coefficient != prev) {
prev = term.coefficient;
coeffs_.push_back(term.coefficient);
starts_.push_back(literals_.size());
}
literals_.push_back(term.literal);
}
// Sentinel.
starts_.push_back(literals_.size());
hash_ = ThoroughHash(reinterpret_cast<const char*>(cst.data()),
cst.size() * sizeof(LiteralWithCoeff));
}
void UpperBoundedLinearConstraint::AddToConflict(
MutableUpperBoundedLinearConstraint* conflict) {
int literal_index = 0;
int coeff_index = 0;
for (Literal literal : literals_) {
conflict->AddTerm(literal, coeffs_[coeff_index]);
++literal_index;
if (literal_index == starts_[coeff_index + 1]) ++coeff_index;
}
conflict->AddToRhs(rhs_);
}
bool UpperBoundedLinearConstraint::HasIdenticalTerms(
const std::vector<LiteralWithCoeff>& cst) {
if (cst.size() != literals_.size()) return false;
int literal_index = 0;
int coeff_index = 0;
for (LiteralWithCoeff term : cst) {
if (literals_[literal_index] != term.literal) return false;
if (coeffs_[coeff_index] != term.coefficient) return false;
++literal_index;
if (literal_index == starts_[coeff_index + 1]) {
++coeff_index;
}
}
return true;
}
bool UpperBoundedLinearConstraint::InitializeRhs(
Coefficient rhs, int trail_index, Coefficient* threshold, Trail* trail,
PbConstraintsEnqueueHelper* helper) {
// Compute the slack from the assigned variables with a trail index
// smaller than the given trail_index. The variable at trail_index has not
// yet been propagated.
rhs_ = rhs;
Coefficient slack = rhs;
// sum_at_previous_level[i] is the sum of assigned literals with a level <
// i. Since we want the sums up to sum_at_previous_level[last_level + 1],
// the size of the vector must be last_level + 2.
const int last_level = trail->CurrentDecisionLevel();
std::vector<Coefficient> sum_at_previous_level(last_level + 2,
Coefficient(0));
int max_relevant_trail_index = 0;
if (trail_index > 0) {
int literal_index = 0;
int coeff_index = 0;
for (Literal literal : literals_) {
const BooleanVariable var = literal.Variable();
const Coefficient coeff = coeffs_[coeff_index];
if (trail->Assignment().LiteralIsTrue(literal) &&
trail->Info(var).trail_index < trail_index) {
max_relevant_trail_index =
std::max(max_relevant_trail_index, trail->Info(var).trail_index);
slack -= coeff;
sum_at_previous_level[trail->Info(var).level + 1] += coeff;
}
++literal_index;
if (literal_index == starts_[coeff_index + 1]) ++coeff_index;
}
// The constraint is infeasible provided the current propagated trail.
if (slack < 0) return false;
// Cummulative sum.
for (int i = 1; i < sum_at_previous_level.size(); ++i) {
sum_at_previous_level[i] += sum_at_previous_level[i - 1];
}
}
// Check the no-propagation at earlier level precondition.
int literal_index = 0;
int coeff_index = 0;
for (Literal literal : literals_) {
const BooleanVariable var = literal.Variable();
const int level = trail->Assignment().VariableIsAssigned(var)
? trail->Info(var).level
: last_level;
if (level > 0) {
CHECK_LE(coeffs_[coeff_index], rhs_ - sum_at_previous_level[level])
<< "var should have been propagated at an earlier level !";
}
++literal_index;
if (literal_index == starts_[coeff_index + 1]) ++coeff_index;
}
// Initial propagation.
//
// TODO(user): The source trail index for the propagation reason (i.e.
// max_relevant_trail_index) may be higher than necessary (for some of the
// propagated literals). Currently this works with FillReason(), but it was a
// source of a really nasty bug (see CL 68906167) because of the (rhs == 1)
// optim. Find a good way to test the logic.
index_ = coeffs_.size() - 1;
already_propagated_end_ = literals_.size();
Update(slack, threshold);
return *threshold < 0
? Propagate(max_relevant_trail_index, threshold, trail, helper)
: true;
}
bool UpperBoundedLinearConstraint::Propagate(
int trail_index, Coefficient* threshold, Trail* trail,
PbConstraintsEnqueueHelper* helper) {
DCHECK_LT(*threshold, 0);
const Coefficient slack = GetSlackFromThreshold(*threshold);
DCHECK_GE(slack, 0) << "The constraint is already a conflict!";
while (index_ >= 0 && coeffs_[index_] > slack) --index_;
// Check propagation.
BooleanVariable first_propagated_variable(-1);
for (int i = starts_[index_ + 1]; i < already_propagated_end_; ++i) {
if (trail->Assignment().LiteralIsFalse(literals_[i])) continue;
if (trail->Assignment().LiteralIsTrue(literals_[i])) {
if (trail->Info(literals_[i].Variable()).trail_index > trail_index) {
// Conflict.
FillReason(*trail, trail_index, literals_[i].Variable(),
&helper->conflict);
helper->conflict.push_back(literals_[i].Negated());
Update(slack, threshold);
return false;
}
} else {
// Propagation.
if (first_propagated_variable < 0) {
if (first_reason_trail_index_ == -1) {
first_reason_trail_index_ = trail->Index();
}
helper->Enqueue(literals_[i].Negated(), trail_index, this, trail);
first_propagated_variable = literals_[i].Variable();
} else {
// Note that the reason for first_propagated_variable is always a
// valid reason for literals_[i].Variable() because we process the
// variable in increasing coefficient order.
trail->EnqueueWithSameReasonAs(literals_[i].Negated(),
first_propagated_variable);
}
}
}
Update(slack, threshold);
DCHECK_GE(*threshold, 0);
return true;
}
void UpperBoundedLinearConstraint::FillReason(
const Trail& trail, int source_trail_index,
BooleanVariable propagated_variable, std::vector<Literal>* reason) {
reason->clear();
// Optimization for an "at most one" constraint.
// Note that the source_trail_index set by InitializeRhs() is ok in this case.
if (rhs_ == 1) {
reason->push_back(trail[source_trail_index].Negated());
return;
}
// Optimization: This will be set to the index of the last literal in the
// reason.
int last_i = 0;
int last_coeff_index = 0;
// Compute the initial reason which is formed by all the literals of the
// constraint that were assigned to true at the time of the propagation.
// We remove literals with a level of 0 since they are not needed.
// We also compute the slack at the time.
Coefficient slack = rhs_;
Coefficient propagated_variable_coefficient(0);
int coeff_index = coeffs_.size() - 1;
for (int i = literals_.size() - 1; i >= 0; --i) {
const Literal literal = literals_[i];
if (literal.Variable() == propagated_variable) {
propagated_variable_coefficient = coeffs_[coeff_index];
} else {
if (trail.Assignment().LiteralIsTrue(literal) &&
trail.Info(literal.Variable()).trail_index <= source_trail_index) {
if (trail.Info(literal.Variable()).level > 0) {
reason->push_back(literal.Negated());
last_i = i;
last_coeff_index = coeff_index;
}
slack -= coeffs_[coeff_index];
}
}
if (i == starts_[coeff_index]) {
--coeff_index;
}
}
DCHECK_GT(propagated_variable_coefficient, slack);
DCHECK_GE(propagated_variable_coefficient, 0);
// In both cases, we can't minimize the reason further.
if (reason->size() <= 1 || coeffs_.size() == 1) return;
Coefficient limit = propagated_variable_coefficient - slack;
DCHECK_GE(limit, 1);
// Remove literals with small coefficients from the reason as long as the
// limit is still stricly positive.
coeff_index = last_coeff_index;
if (coeffs_[coeff_index] >= limit) return;
for (int i = last_i; i < literals_.size(); ++i) {
const Literal literal = literals_[i];
if (i == starts_[coeff_index + 1]) {
++coeff_index;
if (coeffs_[coeff_index] >= limit) break;
}
if (literal.Negated() != reason->back()) continue;
limit -= coeffs_[coeff_index];
reason->pop_back();
if (coeffs_[coeff_index] >= limit) break;
}
DCHECK(!reason->empty());
DCHECK_GE(limit, 1);
}
Coefficient UpperBoundedLinearConstraint::ComputeCancelation(
const Trail& trail, int trail_index,
const MutableUpperBoundedLinearConstraint& conflict) {
Coefficient result(0);
int literal_index = 0;
int coeff_index = 0;
for (Literal literal : literals_) {
if (!trail.Assignment().VariableIsAssigned(literal.Variable()) ||
trail.Info(literal.Variable()).trail_index >= trail_index) {
result += conflict.CancelationAmount(literal, coeffs_[coeff_index]);
}
++literal_index;
if (literal_index == starts_[coeff_index + 1]) ++coeff_index;
}
return result;
}
void UpperBoundedLinearConstraint::ResolvePBConflict(
const Trail& trail, BooleanVariable var,
MutableUpperBoundedLinearConstraint* conflict,
Coefficient* conflict_slack) {
const int limit_trail_index = trail.Info(var).trail_index;
// Compute the constraint activity at the time and the coefficient of the
// variable var.
Coefficient activity(0);
Coefficient var_coeff(0);
int literal_index = 0;
int coeff_index = 0;
for (Literal literal : literals_) {
if (literal.Variable() == var) {
// The variable must be of the opposite sign in the current conflict.
CHECK_NE(literal, conflict->GetLiteral(var));
var_coeff = coeffs_[coeff_index];
} else if (trail.Assignment().LiteralIsTrue(literal) &&
trail.Info(literal.Variable()).trail_index < limit_trail_index) {
activity += coeffs_[coeff_index];
}
++literal_index;
if (literal_index == starts_[coeff_index + 1]) ++coeff_index;
}
// Special case.
if (activity > rhs_) {
// This constraint is already a conflict.
// Use this one instead to start the resolution.
//
// TODO(user): Investigate if this is a good idea. It doesn't happen often,
// but does happend. Maybe we can detect this before in Propagate()? The
// setup is:
// - At a given trail_index, var is propagated and added on the trail.
// - There is some constraint literals assigned to true with a trail index
// in (trail_index, var.trail_index).
// - Their sum is high enough to cause a conflict.
// - But individually, their coefficients are too small to be propagated, so
// the conflict is not yet detected. It will be when these variables are
// processed by PropagateNext().
conflict->ClearAll();
AddToConflict(conflict);
*conflict_slack = rhs_ - activity;
DCHECK_EQ(*conflict_slack,
conflict->ComputeSlackForTrailPrefix(trail, limit_trail_index));
return;
}
// This is the slack of *this for the trail prefix < limit_trail_index.
const Coefficient slack = rhs_ - activity;
CHECK_GE(slack, 0);
// This is the slack of the conflict at the same level.
DCHECK_EQ(*conflict_slack,
conflict->ComputeSlackForTrailPrefix(trail, limit_trail_index));
// TODO(user): If there is more "cancelation" than the min_coeffs below when
// we add the two constraints, the resulting slack may be even lower. Taking
// that into account is probably good.
const Coefficient cancelation =
DEBUG_MODE ? ComputeCancelation(trail, limit_trail_index, *conflict)
: Coefficient(0);
// When we add the two constraints together, the slack of the result for the
// trail < limit_trail_index - 1 must be negative. We know that its value is
// <= slack1 + slack2 - min(coeffs), so we have nothing to do if this bound is
// already negative.
const Coefficient conflict_var_coeff = conflict->GetCoefficient(var);
const Coefficient min_coeffs = std::min(var_coeff, conflict_var_coeff);
const Coefficient new_slack_ub = slack + *conflict_slack - min_coeffs;
CHECK_LT(*conflict_slack, conflict_var_coeff);
CHECK_LT(slack, var_coeff);
if (new_slack_ub < 0) {
AddToConflict(conflict);
DCHECK_EQ(*conflict_slack + slack - cancelation,
conflict->ComputeSlackForTrailPrefix(trail, limit_trail_index));
return;
}
// We need to relax one or both of the constraints so the new slack is < 0.
// Using the relaxation described in ReduceSlackTo(), we can have this new
// slack bound:
//
// (slack - diff) + (conflict_slack - conflict_diff)
// - min(var_coeff - diff, conflict_var_coeff - conflict_diff).
//
// For all diff in [0, slack)
// For all conflict_diff in [0, conflict_slack)
Coefficient diff(0);
Coefficient conflict_diff(0);
// Is relaxing the constraint with the highest coeff enough?
if (new_slack_ub < std::max(var_coeff, conflict_var_coeff) - min_coeffs) {
const Coefficient reduc = new_slack_ub + 1;
if (var_coeff < conflict_var_coeff) {
conflict_diff += reduc;
} else {
diff += reduc;
}
} else {
// Just reduce the slack of both constraints to zero.
//
// TODO(user): The best will be to relax as little as possible.
diff = slack;
conflict_diff = *conflict_slack;
}
// Relax the conflict.
CHECK_GE(conflict_diff, 0);
CHECK_LE(conflict_diff, *conflict_slack);
if (conflict_diff > 0) {
conflict->ReduceSlackTo(trail, limit_trail_index, *conflict_slack,
*conflict_slack - conflict_diff);
*conflict_slack -= conflict_diff;
}
// We apply the same algorithm as the one in ReduceSlackTo() but on
// the non-mutable representation and add it on the fly into conflict.
CHECK_GE(diff, 0);
CHECK_LE(diff, slack);
if (diff == 0) {
// Special case if there if no relaxation is needed.
AddToConflict(conflict);
return;
}
literal_index = 0;
coeff_index = 0;
for (Literal literal : literals_) {
if (trail.Assignment().LiteralIsTrue(literal) &&
trail.Info(literal.Variable()).trail_index < limit_trail_index) {
conflict->AddTerm(literal, coeffs_[coeff_index]);
} else {
const Coefficient new_coeff = coeffs_[coeff_index] - diff;
if (new_coeff > 0) {
// TODO(user): track the cancelation here so we can update
// *conflict_slack properly.
conflict->AddTerm(literal, new_coeff);
}
}
++literal_index;
if (literal_index == starts_[coeff_index + 1]) ++coeff_index;
}
// And the rhs.
conflict->AddToRhs(rhs_ - diff);
}
void UpperBoundedLinearConstraint::Untrail(Coefficient* threshold,
int trail_index) {
const Coefficient slack = GetSlackFromThreshold(*threshold);
while (index_ + 1 < coeffs_.size() && coeffs_[index_ + 1] <= slack) ++index_;
Update(slack, threshold);
if (first_reason_trail_index_ >= trail_index) {
first_reason_trail_index_ = -1;
}
}
// TODO(user): This is relatively slow. Take the "transpose" all at once, and
// maybe put small constraints first on the to_update_ lists.
bool PbConstraints::AddConstraint(const std::vector<LiteralWithCoeff>& cst,
Coefficient rhs, Trail* trail) {
SCOPED_TIME_STAT(&stats_);
DCHECK(!cst.empty());
DCHECK(std::is_sorted(cst.begin(), cst.end(), CoeffComparator));
// Special case if this is the first constraint.
if (constraints_.empty()) {
to_update_.resize(trail->NumVariables() << 1);
enqueue_helper_.propagator_id = propagator_id_;
enqueue_helper_.reasons.resize(trail->NumVariables());
propagation_trail_index_ = trail->Index();
}
std::unique_ptr<UpperBoundedLinearConstraint> c(
new UpperBoundedLinearConstraint(cst));
std::vector<UpperBoundedLinearConstraint*>& duplicate_candidates =
possible_duplicates_[c->hash()];
// Optimization if the constraint terms are duplicates.
for (UpperBoundedLinearConstraint* candidate : duplicate_candidates) {
if (candidate->HasIdenticalTerms(cst)) {
if (rhs < candidate->Rhs()) {
// TODO(user): the index is needed to give the correct thresholds_ entry
// to InitializeRhs() below, but this linear scan is not super
// efficient.
ConstraintIndex i(0);
while (i < constraints_.size() &&
constraints_[i.value()].get() != candidate) {
++i;
}
CHECK_LT(i, constraints_.size());
return candidate->InitializeRhs(rhs, propagation_trail_index_,
&thresholds_[i], trail,
&enqueue_helper_);
} else {
// The constraint is redundant, so there is nothing to do.
return true;
}
}
}
thresholds_.push_back(Coefficient(0));
if (!c->InitializeRhs(rhs, propagation_trail_index_, &thresholds_.back(),
trail, &enqueue_helper_)) {
thresholds_.pop_back();
return false;
}
const ConstraintIndex cst_index(constraints_.size());
duplicate_candidates.push_back(c.get());
constraints_.emplace_back(c.release());
for (LiteralWithCoeff term : cst) {
DCHECK_LT(term.literal.Index(), to_update_.size());
to_update_[term.literal.Index()].push_back(ConstraintIndexWithCoeff(
trail->Assignment().VariableIsAssigned(term.literal.Variable()),
cst_index, term.coefficient));
}
return true;
}
bool PbConstraints::AddLearnedConstraint(
const std::vector<LiteralWithCoeff>& cst, Coefficient rhs, Trail* trail) {
DeleteSomeLearnedConstraintIfNeeded();
const int old_num_constraints = constraints_.size();
const bool result = AddConstraint(cst, rhs, trail);
// The second test is to avoid marking a problem constraint as learned because
// of the "reuse last constraint" optimization.
if (result && constraints_.size() > old_num_constraints) {
constraints_.back()->set_is_learned(true);
}
return result;
}
bool PbConstraints::PropagateNext(Trail* trail) {
SCOPED_TIME_STAT(&stats_);
const int source_trail_index = propagation_trail_index_;
const Literal true_literal = (*trail)[propagation_trail_index_];
++propagation_trail_index_;
// We need to upate ALL threshold, otherwise the Untrail() will not be
// synchronized.
bool conflict = false;
num_threshold_updates_ += to_update_[true_literal.Index()].size();
for (ConstraintIndexWithCoeff& update : to_update_[true_literal.Index()]) {
const Coefficient threshold =
thresholds_[update.index] - update.coefficient;
thresholds_[update.index] = threshold;
if (threshold < 0 && !conflict) {
UpperBoundedLinearConstraint* const cst =
constraints_[update.index.value()].get();
update.need_untrail_inspection = true;
++num_constraint_lookups_;
const int old_value = cst->already_propagated_end();
if (!cst->Propagate(source_trail_index, &thresholds_[update.index], trail,
&enqueue_helper_)) {
trail->MutableConflict()->swap(enqueue_helper_.conflict);
conflicting_constraint_index_ = update.index;
conflict = true;
// We bump the activity of the conflict.
BumpActivity(constraints_[update.index.value()].get());
}
num_inspected_constraint_literals_ +=
old_value - cst->already_propagated_end();
}
}
return !conflict;
}
bool PbConstraints::Propagate(Trail* trail) {
const int old_index = trail->Index();
while (trail->Index() == old_index && propagation_trail_index_ < old_index) {
if (!PropagateNext(trail)) return false;
}
return true;
}
void PbConstraints::Untrail(const Trail& trail, int trail_index) {
SCOPED_TIME_STAT(&stats_);
to_untrail_.ClearAndResize(ConstraintIndex(constraints_.size()));
while (propagation_trail_index_ > trail_index) {
--propagation_trail_index_;
const Literal literal = trail[propagation_trail_index_];
for (ConstraintIndexWithCoeff& update : to_update_[literal.Index()]) {
thresholds_[update.index] += update.coefficient;
// Only the constraints which were inspected during Propagate() need
// inspection during Untrail().
if (update.need_untrail_inspection) {
update.need_untrail_inspection = false;
to_untrail_.Set(update.index);
}
}
}
for (ConstraintIndex cst_index : to_untrail_.PositionsSetAtLeastOnce()) {
constraints_[cst_index.value()]->Untrail(&(thresholds_[cst_index]),
trail_index);
}
}
absl::Span<const Literal> PbConstraints::Reason(const Trail& trail,
int trail_index) const {
SCOPED_TIME_STAT(&stats_);
const PbConstraintsEnqueueHelper::ReasonInfo& reason_info =
enqueue_helper_.reasons[trail_index];
std::vector<Literal>* reason = trail.GetEmptyVectorToStoreReason(trail_index);
reason_info.pb_constraint->FillReason(trail, reason_info.source_trail_index,
trail[trail_index].Variable(), reason);
return *reason;
}
UpperBoundedLinearConstraint* PbConstraints::ReasonPbConstraint(
int trail_index) const {
const PbConstraintsEnqueueHelper::ReasonInfo& reason_info =
enqueue_helper_.reasons[trail_index];
return reason_info.pb_constraint;
}
// TODO(user): Because num_constraints also include problem constraints, the
// policy may not be what we want if there is a big number of problem
// constraints. Fix this.
void PbConstraints::ComputeNewLearnedConstraintLimit() {
const int num_constraints = constraints_.size();
target_number_of_learned_constraint_ =
num_constraints + parameters_->pb_cleanup_increment();
num_learned_constraint_before_cleanup_ =
static_cast<int>(target_number_of_learned_constraint_ /
parameters_->pb_cleanup_ratio()) -
num_constraints;
}
void PbConstraints::DeleteSomeLearnedConstraintIfNeeded() {
if (num_learned_constraint_before_cleanup_ == 0) {
// First time.
ComputeNewLearnedConstraintLimit();