forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcp_model_symmetries.cc
904 lines (816 loc) · 35.3 KB
/
cp_model_symmetries.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/sat/cp_model_symmetries.h"
#include <cstdint>
#include <limits>
#include <memory>
#include "absl/container/flat_hash_map.h"
#include "absl/memory/memory.h"
#include "google/protobuf/repeated_field.h"
#include "ortools/algorithms/find_graph_symmetries.h"
#include "ortools/base/hash.h"
#include "ortools/base/map_util.h"
#include "ortools/sat/cp_model_utils.h"
#include "ortools/sat/symmetry_util.h"
namespace operations_research {
namespace sat {
namespace {
struct VectorHash {
std::size_t operator()(const std::vector<int64_t>& values) const {
size_t hash = 0;
for (const int64_t value : values) {
hash = util_hash::Hash(value, hash);
}
return hash;
}
};
// A simple class to generate equivalence class number for
// GenerateGraphForSymmetryDetection().
class IdGenerator {
public:
IdGenerator() {}
// If the color was never seen before, then generate a new id, otherwise
// return the previously generated id.
int GetId(const std::vector<int64_t>& color) {
return gtl::LookupOrInsert(&id_map_, color, id_map_.size());
}
int NextFreeId() const { return id_map_.size(); }
private:
absl::flat_hash_map<std::vector<int64_t>, int, VectorHash> id_map_;
};
// Appends values in `repeated_field` to `vector`.
//
// We use a template as proto int64_t != C++ int64_t in open source.
template <typename FieldInt64Type>
void Append(
const google::protobuf::RepeatedField<FieldInt64Type>& repeated_field,
std::vector<int64_t>* vector) {
CHECK(vector != nullptr);
for (const FieldInt64Type value : repeated_field) {
vector->push_back(value);
}
}
// Returns a graph whose automorphisms can be mapped back to the symmetries of
// the model described in the given CpModelProto.
//
// Any permutation of the graph that respects the initial_equivalence_classes
// output can be mapped to a symmetry of the given problem simply by taking its
// restriction on the first num_variables nodes and interpreting its index as a
// variable index. In a sense, a node with a low enough index #i is in
// one-to-one correspondence with the variable #i (using the index
// representation of variables).
//
// The format of the initial_equivalence_classes is the same as the one
// described in GraphSymmetryFinder::FindSymmetries(). The classes must be dense
// in [0, num_classes) and any symmetry will only map nodes with the same class
// between each other.
template <typename Graph>
std::unique_ptr<Graph> GenerateGraphForSymmetryDetection(
const CpModelProto& problem, std::vector<int>* initial_equivalence_classes,
SolverLogger* logger) {
CHECK(initial_equivalence_classes != nullptr);
const int num_variables = problem.variables_size();
auto graph = absl::make_unique<Graph>();
// Each node will be created with a given color. Two nodes of different color
// can never be send one into another by a symmetry. The first element of
// the color vector will always be the NodeType.
//
// TODO(user): Using a full int64_t for storing 3 values is not great. We
// can optimize this at the price of a bit more code.
enum NodeType {
VARIABLE_NODE,
VAR_COEFFICIENT_NODE,
CONSTRAINT_NODE,
};
IdGenerator color_id_generator;
initial_equivalence_classes->clear();
auto new_node = [&initial_equivalence_classes, &graph,
&color_id_generator](const std::vector<int64_t>& color) {
// Since we add nodes one by one, initial_equivalence_classes->size() gives
// the number of nodes at any point, which we use as the next node index.
const int node = initial_equivalence_classes->size();
initial_equivalence_classes->push_back(color_id_generator.GetId(color));
// In some corner cases, we create a node but never uses it. We still
// want it to be there.
graph->AddNode(node);
return node;
};
// For two variables to be in the same equivalence class, they need to have
// the same objective coefficient, and the same possible bounds.
//
// TODO(user): We could ignore the objective coefficients, and just make sure
// that when we break symmetry amongst variables, we choose the possibility
// with the smallest cost?
std::vector<int64_t> objective_by_var(num_variables, 0);
for (int i = 0; i < problem.objective().vars_size(); ++i) {
const int ref = problem.objective().vars(i);
const int var = PositiveRef(ref);
const int64_t coeff = problem.objective().coeffs(i);
objective_by_var[var] = RefIsPositive(ref) ? coeff : -coeff;
}
// Create one node for each variable. Note that the code rely on the fact that
// the index of a VARIABLE_NODE type is the same as the variable index.
std::vector<int64_t> tmp_color;
for (int v = 0; v < num_variables; ++v) {
tmp_color = {VARIABLE_NODE, objective_by_var[v]};
Append(problem.variables(v).domain(), &tmp_color);
CHECK_EQ(v, new_node(tmp_color));
}
// We will lazily create "coefficient nodes" that correspond to a variable
// with a given coefficient.
absl::flat_hash_map<std::pair<int64_t, int64_t>, int> coefficient_nodes;
auto get_coefficient_node = [&new_node, &graph, &coefficient_nodes,
&tmp_color](int var, int64_t coeff) {
const int var_node = var;
DCHECK(RefIsPositive(var));
// For a coefficient of one, which are the most common, we can optimize the
// size of the graph by omitting the coefficient node altogether and using
// directly the var_node in this case.
if (coeff == 1) return var_node;
const auto insert =
coefficient_nodes.insert({std::make_pair(var, coeff), 0});
if (!insert.second) return insert.first->second;
tmp_color = {VAR_COEFFICIENT_NODE, coeff};
const int secondary_node = new_node(tmp_color);
graph->AddArc(var_node, secondary_node);
insert.first->second = secondary_node;
return secondary_node;
};
// For a literal we use the same as a coefficient 1 or -1. We can do that
// because literal and (var, coefficient) never appear together in the same
// constraint.
auto get_literal_node = [&get_coefficient_node](int ref) {
return get_coefficient_node(PositiveRef(ref), RefIsPositive(ref) ? 1 : -1);
};
// Because the implications can be numerous, we encode them without
// constraints node by using an arc from the lhs to the rhs. Note that we also
// always add the other direction. We use a set to remove duplicates both for
// efficiency and to not artificially break symmetries by using multi-arcs.
//
// Tricky: We cannot use the base variable node here to avoid situation like
// both a variable a and b having the same children (not(a), not(b)) in the
// graph. Because if that happen, we can permute a and b without permuting
// their associated not(a) and not(b) node! To be sure this cannot happen, a
// variable node can not have as children a VAR_COEFFICIENT_NODE from another
// node. This makes sure that any permutation that touch a variable, must
// permute its coefficient nodes accordingly.
absl::flat_hash_set<std::pair<int, int>> implications;
auto get_implication_node = [&new_node, &graph, &coefficient_nodes,
&tmp_color](int ref) {
const int var = PositiveRef(ref);
const int64_t coeff = RefIsPositive(ref) ? 1 : -1;
const auto insert =
coefficient_nodes.insert({std::make_pair(var, coeff), 0});
if (!insert.second) return insert.first->second;
tmp_color = {VAR_COEFFICIENT_NODE, coeff};
const int secondary_node = new_node(tmp_color);
graph->AddArc(var, secondary_node);
insert.first->second = secondary_node;
return secondary_node;
};
auto add_implication = [&get_implication_node, &graph, &implications](
int ref_a, int ref_b) {
const auto insert = implications.insert({ref_a, ref_b});
if (!insert.second) return;
graph->AddArc(get_implication_node(ref_a), get_implication_node(ref_b));
// Always add the other side.
implications.insert({NegatedRef(ref_b), NegatedRef(ref_a)});
graph->AddArc(get_implication_node(NegatedRef(ref_b)),
get_implication_node(NegatedRef(ref_a)));
};
// Add constraints to the graph.
for (const ConstraintProto& constraint : problem.constraints()) {
const int constraint_node = initial_equivalence_classes->size();
std::vector<int64_t> color = {CONSTRAINT_NODE,
constraint.constraint_case()};
switch (constraint.constraint_case()) {
case ConstraintProto::CONSTRAINT_NOT_SET:
break;
case ConstraintProto::kLinear: {
// TODO(user): We can use the same trick as for the implications to
// encode relations of the form coeff * var_a <= coeff * var_b without
// creating a constraint node by directly adding an arc between the two
// var coefficient nodes.
Append(constraint.linear().domain(), &color);
CHECK_EQ(constraint_node, new_node(color));
for (int i = 0; i < constraint.linear().vars_size(); ++i) {
const int ref = constraint.linear().vars(i);
const int variable_node = PositiveRef(ref);
const int64_t coeff = RefIsPositive(ref)
? constraint.linear().coeffs(i)
: -constraint.linear().coeffs(i);
graph->AddArc(get_coefficient_node(variable_node, coeff),
constraint_node);
}
break;
}
case ConstraintProto::kBoolOr: {
CHECK_EQ(constraint_node, new_node(color));
for (const int ref : constraint.bool_or().literals()) {
graph->AddArc(get_literal_node(ref), constraint_node);
}
break;
}
case ConstraintProto::kAtMostOne: {
if (constraint.at_most_one().literals().size() == 2) {
// Treat it as an implication to avoid creating a node.
add_implication(constraint.at_most_one().literals(0),
NegatedRef(constraint.at_most_one().literals(1)));
break;
}
CHECK_EQ(constraint_node, new_node(color));
for (const int ref : constraint.at_most_one().literals()) {
graph->AddArc(get_literal_node(ref), constraint_node);
}
break;
}
case ConstraintProto::kExactlyOne: {
CHECK_EQ(constraint_node, new_node(color));
for (const int ref : constraint.exactly_one().literals()) {
graph->AddArc(get_literal_node(ref), constraint_node);
}
break;
}
case ConstraintProto::kBoolXor: {
CHECK_EQ(constraint_node, new_node(color));
for (const int ref : constraint.bool_xor().literals()) {
graph->AddArc(get_literal_node(ref), constraint_node);
}
break;
}
case ConstraintProto::kBoolAnd: {
// The other cases should be presolved before this is called.
// TODO(user): not 100% true, this happen on rmatr200-p5, Fix.
if (constraint.enforcement_literal_size() != 1) {
SOLVER_LOG(
logger,
"[Symmetry] BoolAnd with multiple enforcement literal are not "
"supported in symmetry code:",
constraint.ShortDebugString());
return nullptr;
}
CHECK_EQ(constraint.enforcement_literal_size(), 1);
const int ref_a = constraint.enforcement_literal(0);
for (const int ref_b : constraint.bool_and().literals()) {
add_implication(ref_a, ref_b);
}
break;
}
default: {
// If the model contains any non-supported constraints, return an empty
// graph.
//
// TODO(user): support other types of constraints. Or at least, we
// could associate to them an unique node so that their variables can
// appear in no symmetry.
VLOG(1) << "Unsupported constraint type "
<< ConstraintCaseName(constraint.constraint_case());
return nullptr;
}
}
// For enforcement, we use a similar trick than for the implications.
// Because all our constraint arcs are in the direction var_node to
// constraint_node, we just use the reverse direction for the enforcement
// part. This way we can reuse the same get_literal_node() function.
if (constraint.constraint_case() != ConstraintProto::kBoolAnd) {
for (const int ref : constraint.enforcement_literal()) {
graph->AddArc(constraint_node, get_literal_node(ref));
}
}
}
graph->Build();
DCHECK_EQ(graph->num_nodes(), initial_equivalence_classes->size());
// TODO(user): The symmetry code does not officially support multi-arcs. And
// we shouldn't have any as long as there is no duplicates variable in our
// constraints (but of course, we can't always guarantee that). That said,
// because the symmetry code really only look at the degree, it works as long
// as the maximum degree is bounded by num_nodes.
const int num_nodes = graph->num_nodes();
std::vector<int> in_degree(num_nodes, 0);
std::vector<int> out_degree(num_nodes, 0);
for (int i = 0; i < num_nodes; ++i) {
out_degree[i] = graph->OutDegree(i);
for (const int head : (*graph)[i]) {
in_degree[head]++;
}
}
for (int i = 0; i < num_nodes; ++i) {
if (in_degree[i] >= num_nodes || out_degree[i] >= num_nodes) {
SOLVER_LOG(logger, "[Symmetry] Too many multi-arcs in symmetry code.");
return nullptr;
}
}
// Because this code is running during presolve, a lot a variable might have
// no edges. We do not want to detect symmetries between these.
//
// Note that this code forces us to "densify" the ids afterwards because the
// symmetry detection code relies on that.
//
// TODO(user): It will probably be more efficient to not even create these
// nodes, but we will need a mapping to know the variable <-> node index.
int next_id = color_id_generator.NextFreeId();
for (int i = 0; i < num_variables; ++i) {
if ((*graph)[i].empty()) {
(*initial_equivalence_classes)[i] = next_id++;
}
}
// Densify ids.
int id = 0;
std::vector<int> mapping(next_id, -1);
for (int& ref : *initial_equivalence_classes) {
if (mapping[ref] == -1) {
ref = mapping[ref] = id++;
} else {
ref = mapping[ref];
}
}
return graph;
}
} // namespace
void FindCpModelSymmetries(
const SatParameters& params, const CpModelProto& problem,
std::vector<std::unique_ptr<SparsePermutation>>* generators,
double deterministic_limit, SolverLogger* logger) {
CHECK(generators != nullptr);
generators->clear();
typedef GraphSymmetryFinder::Graph Graph;
std::vector<int> equivalence_classes;
std::unique_ptr<Graph> graph(GenerateGraphForSymmetryDetection<Graph>(
problem, &equivalence_classes, logger));
if (graph == nullptr) return;
SOLVER_LOG(logger, "[Symmetry] Graph for symmetry has ", graph->num_nodes(),
" nodes and ", graph->num_arcs(), " arcs.");
if (graph->num_nodes() == 0) return;
GraphSymmetryFinder symmetry_finder(*graph, /*is_undirected=*/false);
std::vector<int> factorized_automorphism_group_size;
std::unique_ptr<TimeLimit> time_limit =
TimeLimit::FromDeterministicTime(deterministic_limit);
const absl::Status status = symmetry_finder.FindSymmetries(
&equivalence_classes, generators, &factorized_automorphism_group_size,
time_limit.get());
// TODO(user): Change the API to not return an error when the time limit is
// reached.
if (!status.ok()) {
SOLVER_LOG(logger,
"[Symmetry] GraphSymmetryFinder error: ", status.message());
}
// Remove from the permutations the part not concerning the variables.
// Note that some permutations may become empty, which means that we had
// duplicate constraints.
double average_support_size = 0.0;
int num_generators = 0;
int num_duplicate_constraints = 0;
for (int i = 0; i < generators->size(); ++i) {
SparsePermutation* permutation = (*generators)[i].get();
std::vector<int> to_delete;
for (int j = 0; j < permutation->NumCycles(); ++j) {
// Because variable nodes are in a separate equivalence class than any
// other node, a cycle can either contain only variable nodes or none, so
// we just need to check one element of the cycle.
if (*(permutation->Cycle(j).begin()) >= problem.variables_size()) {
to_delete.push_back(j);
if (DEBUG_MODE) {
// Verify that the cycle's entire support does not touch any variable.
for (const int node : permutation->Cycle(j)) {
DCHECK_GE(node, problem.variables_size());
}
}
}
}
permutation->RemoveCycles(to_delete);
if (!permutation->Support().empty()) {
average_support_size += permutation->Support().size();
swap((*generators)[num_generators], (*generators)[i]);
++num_generators;
} else {
++num_duplicate_constraints;
}
}
generators->resize(num_generators);
average_support_size /= num_generators;
SOLVER_LOG(logger, "[Symmetry] Symmetry computation done. time: ",
time_limit->GetElapsedTime(),
" dtime: ", time_limit->GetElapsedDeterministicTime());
if (num_generators > 0) {
SOLVER_LOG(logger, "[Symmetry] # of generators: ", num_generators);
SOLVER_LOG(logger,
"[Symmetry] Average support size: ", average_support_size);
if (num_duplicate_constraints > 0) {
SOLVER_LOG(logger, "[Symmetry] The model contains ",
num_duplicate_constraints, " duplicate constraints !");
}
}
}
void DetectAndAddSymmetryToProto(const SatParameters& params,
CpModelProto* proto, SolverLogger* logger) {
SymmetryProto* symmetry = proto->mutable_symmetry();
symmetry->Clear();
std::vector<std::unique_ptr<SparsePermutation>> generators;
FindCpModelSymmetries(params, *proto, &generators,
/*deterministic_limit=*/1.0, logger);
if (generators.empty()) return;
for (const std::unique_ptr<SparsePermutation>& perm : generators) {
SparsePermutationProto* perm_proto = symmetry->add_permutations();
const int num_cycle = perm->NumCycles();
for (int i = 0; i < num_cycle; ++i) {
const int old_size = perm_proto->support().size();
for (const int var : perm->Cycle(i)) {
perm_proto->add_support(var);
}
perm_proto->add_cycle_sizes(perm_proto->support().size() - old_size);
}
}
std::vector<std::vector<int>> orbitope = BasicOrbitopeExtraction(generators);
if (orbitope.empty()) return;
SOLVER_LOG(logger, "[Symmetry] Found orbitope of size ", orbitope.size(),
" x ", orbitope[0].size());
DenseMatrixProto* matrix = symmetry->add_orbitopes();
matrix->set_num_rows(orbitope.size());
matrix->set_num_cols(orbitope[0].size());
for (const std::vector<int>& row : orbitope) {
for (const int entry : row) {
matrix->add_entries(entry);
}
}
}
bool DetectAndExploitSymmetriesInPresolve(PresolveContext* context) {
const SatParameters& params = context->params();
const CpModelProto& proto = *context->working_model;
// We need to make sure the proto is up to date before computing symmetries!
if (context->working_model->has_objective()) {
context->WriteObjectiveToProto();
}
const int num_vars = proto.variables_size();
for (int i = 0; i < num_vars; ++i) {
FillDomainInProto(context->DomainOf(i),
context->working_model->mutable_variables(i));
}
// Tricky: the equivalence relation are not part of the proto.
// We thus add them temporarily to compute the symmetry.
int64_t num_added = 0;
const int initial_ct_index = proto.constraints().size();
for (int var = 0; var < num_vars; ++var) {
if (context->IsFixed(var)) continue;
if (context->VariableWasRemoved(var)) continue;
if (context->VariableIsNotUsedAnymore(var)) continue;
const AffineRelation::Relation r = context->GetAffineRelation(var);
if (r.representative == var) continue;
++num_added;
ConstraintProto* ct = context->working_model->add_constraints();
auto* arg = ct->mutable_linear();
arg->add_vars(var);
arg->add_coeffs(1);
arg->add_vars(r.representative);
arg->add_coeffs(-r.coeff);
arg->add_domain(r.offset);
arg->add_domain(r.offset);
}
std::vector<std::unique_ptr<SparsePermutation>> generators;
FindCpModelSymmetries(params, proto, &generators,
/*deterministic_limit=*/1.0, context->logger());
// Remove temporary affine relation.
context->working_model->mutable_constraints()->DeleteSubrange(
initial_ct_index, num_added);
if (generators.empty()) return true;
// Collect the at most ones.
//
// Note(user): This relies on the fact that the pointers remain stable when
// we adds new constraints. It should be the case, but it is a bit unsafe.
// On the other hand it is annoying to deal with both cases below.
std::vector<const google::protobuf::RepeatedField<int32_t>*> at_most_ones;
for (int i = 0; i < proto.constraints_size(); ++i) {
if (proto.constraints(i).constraint_case() == ConstraintProto::kAtMostOne) {
at_most_ones.push_back(&proto.constraints(i).at_most_one().literals());
}
if (proto.constraints(i).constraint_case() ==
ConstraintProto::kExactlyOne) {
at_most_ones.push_back(&proto.constraints(i).exactly_one().literals());
}
}
// Experimental. Generic approach. First step.
//
// If an at most one intersect with one or more orbit, in each intersection,
// we can fix all but one variable to zero. For now we only test positive
// literal, and maximize the number of fixing.
std::vector<int> can_be_fixed_to_false;
{
const std::vector<int> orbits = GetOrbits(num_vars, generators);
std::vector<int> orbit_sizes;
int max_orbit_size = 0;
for (const int rep : orbits) {
if (rep == -1) continue;
if (rep >= orbit_sizes.size()) orbit_sizes.resize(rep + 1, 0);
orbit_sizes[rep]++;
max_orbit_size = std::max(max_orbit_size, orbit_sizes[rep]);
}
std::vector<int> tmp_to_clear;
std::vector<int> tmp_sizes(num_vars, 0);
for (const google::protobuf::RepeatedField<int32_t>* literals :
at_most_ones) {
tmp_to_clear.clear();
// Compute how many variables we can fix with this at most one.
int num_fixable = 0;
for (const int literal : *literals) {
if (!RefIsPositive(literal)) continue;
if (context->IsFixed(literal)) continue;
const int var = PositiveRef(literal);
const int rep = orbits[var];
if (rep == -1) continue;
// We count all but the first one in each orbit.
if (tmp_sizes[rep] == 0) tmp_to_clear.push_back(rep);
if (tmp_sizes[rep] > 0) ++num_fixable;
tmp_sizes[rep]++;
}
// Redo a pass to copy the intersection.
if (num_fixable > can_be_fixed_to_false.size()) {
can_be_fixed_to_false.clear();
for (const int literal : *literals) {
if (!RefIsPositive(literal)) continue;
if (context->IsFixed(literal)) continue;
const int var = PositiveRef(literal);
const int rep = orbits[var];
if (rep == -1) continue;
// We push all but the first one in each orbit.
if (tmp_sizes[rep] == 0) can_be_fixed_to_false.push_back(var);
tmp_sizes[rep] = 0;
}
} else {
// Sparse clean up.
for (const int rep : tmp_to_clear) tmp_sizes[rep] = 0;
}
}
SOLVER_LOG(
context->logger(),
"[Symmetry] Num fixable by intersecting at_most_one with orbits: ",
can_be_fixed_to_false.size(), " largest_orbit: ", max_orbit_size);
}
// Orbitope approach.
//
// This is basically the same as the generic approach, but because of the
// extra structure, computing the orbit of any stabilizer subgroup is easy.
// We look for orbits intersecting at most one constraints, so we can break
// symmetry by fixing variables.
//
// TODO(user): The same effect could be achieved by adding symmetry breaking
// constraints of the form "a >= b " between Booleans and let the presolve do
// the reduction. This might be less code, but it is also less efficient.
// Similarly, when we cannot just fix variables to break symmetries, we could
// add these constraints, but it is unclear if we should do it all the time or
// not.
//
// TODO(user): code the generic approach with orbits and stabilizer.
std::vector<std::vector<int>> orbitope = BasicOrbitopeExtraction(generators);
if (!orbitope.empty()) {
SOLVER_LOG(context->logger(), "[Symmetry] Found orbitope of size ",
orbitope.size(), " x ", orbitope[0].size());
}
// Supper simple heuristic to use the orbitope or not.
//
// In an orbitope with an at most one on each row, we can fix the upper right
// triangle. We could use a formula, but the loop is fast enough.
//
// TODO(user): Compute the stabilizer under the only non-fixed element and
// iterate!
int max_num_fixed_in_orbitope = 0;
if (!orbitope.empty()) {
const int num_rows = orbitope[0].size();
int size_left = num_rows;
for (int col = 0; size_left > 1 && col < orbitope.size(); ++col) {
max_num_fixed_in_orbitope += size_left - 1;
--size_left;
}
}
if (max_num_fixed_in_orbitope < can_be_fixed_to_false.size()) {
for (int i = 0; i < can_be_fixed_to_false.size(); ++i) {
const int var = can_be_fixed_to_false[i];
context->UpdateRuleStats("symmetry: fixed to false in general orbit");
if (!context->SetLiteralToFalse(var)) return false;
}
return true;
}
if (orbitope.empty()) return true;
// This will always be kept all zero after usage.
std::vector<int> tmp_to_clear;
std::vector<int> tmp_sizes(num_vars, 0);
std::vector<int> tmp_num_positive(num_vars, 0);
// TODO(user): The code below requires that no variable appears twice in the
// same at most one. In particular lit and not(lit) cannot appear in the same
// at most one.
for (const google::protobuf::RepeatedField<int32_t>* literals :
at_most_ones) {
for (const int lit : *literals) {
const int var = PositiveRef(lit);
CHECK_NE(tmp_sizes[var], 1);
tmp_sizes[var] = 1;
}
for (const int lit : *literals) {
tmp_sizes[PositiveRef(lit)] = 0;
}
}
while (!orbitope.empty() && orbitope[0].size() > 1) {
const int num_cols = orbitope[0].size();
const std::vector<int> orbits = GetOrbitopeOrbits(num_vars, orbitope);
// Because in the orbitope case, we have a full symmetry group of the
// columns, we can infer more than just using the orbits under a general
// permutation group. If an at most one contains two variables from the
// orbit, we can infer:
// 1/ If the two variables appear positively, then there is an at most one
// on the full orbit, and we can set n - 1 variables to zero to break the
// symmetry.
// 2/ If the two variables appear negatively, then the opposite situation
// arise and there is at most one zero on the orbit, we can set n - 1
// variables to one.
// 3/ If two literals of opposite sign appear, then the only possibility
// for the orbit are all at one or all at zero, thus we can mark all
// variables as equivalent.
//
// These property comes from the fact that when we permute a line of the
// orbitope in any way, then the position than ends up in the at most one
// must never be both at one.
//
// Note that 1/ can be done without breaking any symmetry, but for 2/ and 3/
// by choosing which variable is not fixed, we will break some symmetry, and
// we will need to update the orbitope to stabilize this choice before
// continuing.
//
// TODO(user): for 2/ and 3/ we could add an at most one constraint on the
// full orbit if it is not already there!
//
// Note(user): On the miplib, only 1/ happens currently. Not sure with LNS
// though.
std::vector<bool> all_equivalent_rows(orbitope.size(), false);
// The result described above can be generalized if an at most one intersect
// many of the orbitope rows, each in at leat two positions. We will track
// the set of best rows on which we have an at most one (or at most one
// zero) on all their entries.
bool at_most_one_in_best_rows; // The alternative is at most one zero.
int64_t best_score = 0;
std::vector<int> best_rows;
std::vector<int> rows_in_at_most_one;
for (const google::protobuf::RepeatedField<int32_t>* literals :
at_most_ones) {
tmp_to_clear.clear();
for (const int literal : *literals) {
if (context->IsFixed(literal)) continue;
const int var = PositiveRef(literal);
const int rep = orbits[var];
if (rep == -1) continue;
if (tmp_sizes[rep] == 0) tmp_to_clear.push_back(rep);
tmp_sizes[rep]++;
if (RefIsPositive(literal)) tmp_num_positive[rep]++;
}
int num_positive_direction = 0;
int num_negative_direction = 0;
// An at most one touching two positions in an orbitope row can possibly
// be extended, depending if it has singleton intersection swith other
// rows and where.
bool possible_extension = false;
rows_in_at_most_one.clear();
for (const int row : tmp_to_clear) {
const int size = tmp_sizes[row];
const int num_positive = tmp_num_positive[row];
const int num_negative = tmp_sizes[row] - tmp_num_positive[row];
tmp_sizes[row] = 0;
tmp_num_positive[row] = 0;
if (num_positive > 1 && num_negative == 0) {
if (size < num_cols) possible_extension = true;
rows_in_at_most_one.push_back(row);
++num_positive_direction;
} else if (num_positive == 0 && num_negative > 1) {
if (size < num_cols) possible_extension = true;
rows_in_at_most_one.push_back(row);
++num_negative_direction;
} else if (num_positive > 0 && num_negative > 0) {
all_equivalent_rows[row] = true;
}
}
if (possible_extension) {
context->UpdateRuleStats(
"TODO symmetry: possible at most one extension.");
}
if (num_positive_direction > 0 && num_negative_direction > 0) {
return context->NotifyThatModelIsUnsat("Symmetry and at most ones");
}
const bool direction = num_positive_direction > 0;
// Because of symmetry, the choice of the column shouldn't matter (they
// will all appear in the same number of constraints of the same types),
// however we prefer to fix the variables that seems to touch more
// constraints.
//
// TODO(user): maybe we should simplify the constraint using the variable
// we fix before choosing the next row to break symmetry on. If there are
// multiple row involved, we could also take the intersection instead of
// probably counting the same constraints more than once.
int64_t score = 0;
for (const int row : rows_in_at_most_one) {
score +=
context->VarToConstraints(PositiveRef(orbitope[row][0])).size();
}
if (score > best_score) {
at_most_one_in_best_rows = direction;
best_score = score;
best_rows = rows_in_at_most_one;
}
}
// Mark all the equivalence.
// Note that this operation do not change the symmetry group.
//
// TODO(user): We could remove these rows from the orbitope. Note that
// currently this never happen on the miplib (maybe in LNS though).
for (int i = 0; i < all_equivalent_rows.size(); ++i) {
if (all_equivalent_rows[i]) {
for (int j = 1; j < num_cols; ++j) {
context->StoreBooleanEqualityRelation(orbitope[i][0], orbitope[i][j]);
context->UpdateRuleStats("symmetry: all equivalent in orbit");
if (context->ModelIsUnsat()) return false;
}
}
}
// Break the symmetry on our set of best rows by picking one columns
// and setting all the other entries to zero or one. Note that the at most
// one applies to all entries in all rows.
//
// TODO(user): We don't have any at most one relation on this orbitope,
// but we could still add symmetry breaking inequality by picking any matrix
// entry and making it the largest/lowest value on its row. This also work
// for non-Booleans.
if (best_score == 0) {
context->UpdateRuleStats(
"TODO symmetry: add symmetry breaking inequalities?");
break;
}
// If our symmetry group is valid, they cannot be any variable already
// fixed to one (or zero if !at_most_one_in_best_rows). Otherwise all would
// be fixed to one and the problem would be unsat.
for (const int i : best_rows) {
for (int j = 0; j < num_cols; ++j) {
const int var = orbitope[i][j];
if ((at_most_one_in_best_rows && context->LiteralIsTrue(var)) ||
(!at_most_one_in_best_rows && context->LiteralIsFalse(var))) {
return context->NotifyThatModelIsUnsat("Symmetry and at most one");
}
}
}
// We have an at most one on a set of rows, we will pick a column, and set
// all other entries on these rows to zero.
//
// TODO(user): All choices should be equivalent, but double check?
const int best_col = 0;
for (const int i : best_rows) {
for (int j = 0; j < num_cols; ++j) {
if (j == best_col) continue;
const int var = orbitope[i][j];
if (at_most_one_in_best_rows) {
context->UpdateRuleStats("symmetry: fixed to false");
if (!context->SetLiteralToFalse(var)) return false;
} else {
context->UpdateRuleStats("symmetry: fixed to true");
if (!context->SetLiteralToTrue(var)) return false;
}
}
}
// Remove all best rows.
for (const int i : best_rows) orbitope[i].clear();
int new_size = 0;
for (int i = 0; i < orbitope.size(); ++i) {
if (!orbitope[i].empty()) orbitope[new_size++] = orbitope[i];
}
CHECK_LT(new_size, orbitope.size());
orbitope.resize(new_size);
// Remove best_col.
for (int i = 0; i < orbitope.size(); ++i) {
std::swap(orbitope[i][best_col], orbitope[i].back());
orbitope[i].pop_back();
}
}
// If we are left with a set of variable than can all be permuted, lets
// break the symmetry by ordering them.
if (orbitope.size() == 1) {
const int num_cols = orbitope[0].size();
for (int i = 0; i + 1 < num_cols; ++i) {
// Add orbitope[0][i] >= orbitope[0][i+1].
ConstraintProto* ct = context->working_model->add_constraints();
ct->mutable_linear()->add_coeffs(1);
ct->mutable_linear()->add_vars(orbitope[0][i]);
ct->mutable_linear()->add_coeffs(-1);
ct->mutable_linear()->add_vars(orbitope[0][i + 1]);
ct->mutable_linear()->add_domain(0);
ct->mutable_linear()->add_domain(std::numeric_limits<int64_t>::max());
context->UpdateRuleStats("symmetry: added symmetry breaking inequality");
}
context->UpdateNewConstraintsVariableUsage();
}
return true;
}
} // namespace sat
} // namespace operations_research