forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlp_test.py
236 lines (196 loc) · 9.54 KB
/
lp_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# Copyright 2010-2021 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for ortools.linear_solver.pywraplp."""
import unittest
from ortools.linear_solver import linear_solver_pb2
from ortools.linear_solver import pywraplp
class PyWrapLpTest(unittest.TestCase):
def RunLinearExampleNaturalLanguageAPI(self, optimization_problem_type):
"""Example of simple linear program with natural language API."""
solver = pywraplp.Solver('RunLinearExampleNaturalLanguageAPI',
optimization_problem_type)
infinity = solver.infinity()
# x1, x2 and x3 are continuous non-negative variables.
x1 = solver.NumVar(0.0, infinity, 'x1')
x2 = solver.NumVar(0.0, infinity, 'x2')
x3 = solver.NumVar(0.0, infinity, 'x3')
solver.Maximize(10 * x1 + 6 * x2 + 4 * x3)
c0 = solver.Add(10 * x1 + 4 * x2 + 5 * x3 <= 600, 'ConstraintName0')
c1 = solver.Add(2 * x1 + 2 * x2 + 6 * x3 <= 300)
sum_of_vars = sum([x1, x2, x3])
c2 = solver.Add(sum_of_vars <= 100.0, 'OtherConstraintName')
self.SolveAndPrint(solver, [x1, x2, x3], [c0, c1, c2])
# Print a linear expression's solution value.
print(('Sum of vars: %s = %s' % (sum_of_vars,
sum_of_vars.solution_value())))
def RunLinearExampleCppStyleAPI(self, optimization_problem_type):
"""Example of simple linear program with the C++ style API."""
solver = pywraplp.Solver('RunLinearExampleCppStyle',
optimization_problem_type)
infinity = solver.infinity()
# x1, x2 and x3 are continuous non-negative variables.
x1 = solver.NumVar(0.0, infinity, 'x1')
x2 = solver.NumVar(0.0, infinity, 'x2')
x3 = solver.NumVar(0.0, infinity, 'x3')
# Maximize 10 * x1 + 6 * x2 + 4 * x3.
objective = solver.Objective()
objective.SetCoefficient(x1, 10)
objective.SetCoefficient(x2, 6)
objective.SetCoefficient(x3, 4)
objective.SetMaximization()
# x1 + x2 + x3 <= 100.
c0 = solver.Constraint(-infinity, 100.0, 'c0')
c0.SetCoefficient(x1, 1)
c0.SetCoefficient(x2, 1)
c0.SetCoefficient(x3, 1)
# 10 * x1 + 4 * x2 + 5 * x3 <= 600.
c1 = solver.Constraint(-infinity, 600.0, 'c1')
c1.SetCoefficient(x1, 10)
c1.SetCoefficient(x2, 4)
c1.SetCoefficient(x3, 5)
# 2 * x1 + 2 * x2 + 6 * x3 <= 300.
c2 = solver.Constraint(-infinity, 300.0, 'c2')
c2.SetCoefficient(x1, 2)
c2.SetCoefficient(x2, 2)
c2.SetCoefficient(x3, 6)
self.SolveAndPrint(solver, [x1, x2, x3], [c0, c1, c2])
def RunMixedIntegerExampleCppStyleAPI(self, optimization_problem_type):
"""Example of simple mixed integer program with the C++ style API."""
solver = pywraplp.Solver('RunMixedIntegerExampleCppStyle',
optimization_problem_type)
infinity = solver.infinity()
# x1 and x2 are integer non-negative variables.
x1 = solver.IntVar(0.0, infinity, 'x1')
x2 = solver.IntVar(0.0, infinity, 'x2')
# Maximize x1 + 10 * x2.
objective = solver.Objective()
objective.SetCoefficient(x1, 1)
objective.SetCoefficient(x2, 10)
objective.SetMaximization()
# x1 + 7 * x2 <= 17.5.
c0 = solver.Constraint(-infinity, 17.5, 'c0')
c0.SetCoefficient(x1, 1)
c0.SetCoefficient(x2, 7)
# x1 <= 3.5.
c1 = solver.Constraint(-infinity, 3.5, 'c1')
c1.SetCoefficient(x1, 1)
c1.SetCoefficient(x2, 0)
self.SolveAndPrint(solver, [x1, x2], [c0, c1])
def RunBooleanExampleCppStyleAPI(self, optimization_problem_type):
"""Example of simple boolean program with the C++ style API."""
solver = pywraplp.Solver('RunBooleanExampleCppStyle',
optimization_problem_type)
# x1 and x2 are integer non-negative variables.
x1 = solver.BoolVar('x1')
x2 = solver.BoolVar('x2')
# Minimize 2 * x1 + x2.
objective = solver.Objective()
objective.SetCoefficient(x1, 2)
objective.SetCoefficient(x2, 1)
objective.SetMinimization()
# 1 <= x1 + 2 * x2 <= 3.
c0 = solver.Constraint(1, 3, 'c0')
c0.SetCoefficient(x1, 1)
c0.SetCoefficient(x2, 2)
self.SolveAndPrint(solver, [x1, x2], [c0])
def SolveAndPrint(self, solver, variable_list, constraint_list, tolerance=1e-7):
"""Solve the problem and print the solution."""
print(('Number of variables = %d' % solver.NumVariables()))
self.assertEqual(solver.NumVariables(), len(variable_list))
print(('Number of constraints = %d' % solver.NumConstraints()))
self.assertEqual(solver.NumConstraints(), len(constraint_list))
result_status = solver.Solve()
# The problem has an optimal solution.
self.assertEqual(result_status, pywraplp.Solver.OPTIMAL)
# The solution looks legit (when using solvers others than
# GLOP_LINEAR_PROGRAMMING, verifying the solution is highly recommended!).
self.assertTrue(solver.VerifySolution(tolerance, True))
print(('Problem solved in %f milliseconds' % solver.wall_time()))
# The objective value of the solution.
print(('Optimal objective value = %f' % solver.Objective().Value()))
# The value of each variable in the solution.
for variable in variable_list:
print(('%s = %f' % (variable.name(), variable.solution_value())))
print('Advanced usage:')
print(('Problem solved in %d iterations' % solver.iterations()))
for variable in variable_list:
print(('%s: reduced cost = %f' % (variable.name(),
variable.reduced_cost())))
activities = solver.ComputeConstraintActivities()
for i, constraint in enumerate(constraint_list):
print(
('constraint %d: dual value = %f\n'
' activity = %f' %
(i, constraint.dual_value(), activities[constraint.index()])))
def testApi(self):
all_names_and_problem_types = (list(
linear_solver_pb2.MPModelRequest.SolverType.items()))
for name, problem_type in all_names_and_problem_types:
with self.subTest(f'{name}: {problem_type}'):
if not pywraplp.Solver.SupportsProblemType(problem_type):
continue
if name.startswith('GUROBI'):
continue
if name.endswith('LINEAR_PROGRAMMING'):
print(('\n------ Linear programming example with %s ------' %
name))
print('\n*** Natural language API ***')
self.RunLinearExampleNaturalLanguageAPI(problem_type)
print('\n*** C++ style API ***')
self.RunLinearExampleCppStyleAPI(problem_type)
elif name.endswith('MIXED_INTEGER_PROGRAMMING'):
print((
'\n------ Mixed Integer programming example with %s ------'
% name))
print('\n*** C++ style API ***')
self.RunMixedIntegerExampleCppStyleAPI(problem_type)
elif name.endswith('INTEGER_PROGRAMMING'):
print(('\n------ Boolean programming example with %s ------' %
name))
print('\n*** C++ style API ***')
self.RunBooleanExampleCppStyleAPI(problem_type)
else:
print('ERROR: %s unsupported' % name)
def testSetHint(self):
print('testSetHint')
solver = pywraplp.Solver('RunBooleanExampleCppStyle',
pywraplp.Solver.GLOP_LINEAR_PROGRAMMING)
infinity = solver.infinity()
# x1 and x2 are integer non-negative variables.
x1 = solver.BoolVar('x1')
x2 = solver.BoolVar('x2')
# Minimize 2 * x1 + x2.
objective = solver.Objective()
objective.SetCoefficient(x1, 2)
objective.SetCoefficient(x2, 1)
objective.SetMinimization()
# 1 <= x1 + 2 * x2 <= 3.
c0 = solver.Constraint(1, 3, 'c0')
c0.SetCoefficient(x1, 1)
c0.SetCoefficient(x2, 2)
solver.SetHint([x1, x2], [1.0, 0.0])
self.assertEqual(2, len(solver.variables()))
self.assertEqual(1, len(solver.constraints()))
def testBopInfeasible(self):
print('testBopInfeasible')
solver = pywraplp.Solver('test', pywraplp.Solver.BOP_INTEGER_PROGRAMMING)
solver.EnableOutput()
x = solver.IntVar(0, 10, "")
solver.Add(x >= 20)
result_status = solver.Solve()
print(result_status) # outputs: 0
def testSolveFromProto(self):
solver = pywraplp.Solver('', pywraplp.Solver.GLOP_LINEAR_PROGRAMMING)
solver.LoadSolutionFromProto(linear_solver_pb2.MPSolutionResponse())
if __name__ == '__main__':
unittest.main()