forked from nlesc-dirac/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlbfgsnew.py
759 lines (615 loc) · 26.4 KB
/
lbfgsnew.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
import torch
from functools import reduce
from torch.optim.optimizer import Optimizer
import math
be_verbose=False
class LBFGSNew(Optimizer):
"""Implements L-BFGS algorithm.
.. warning::
This optimizer doesn't support per-parameter options and parameter
groups (there can be only one).
.. warning::
Right now all parameters have to be on a single device. This will be
improved in the future.
.. note::
This is a very memory intensive optimizer (it requires additional
``param_bytes * (history_size + 1)`` bytes). If it doesn't fit in memory
try reducing the history size, or use a different algorithm.
Arguments:
lr (float): learning rate (fallback value when line search fails. not really needed) (default: 1)
max_iter (int): maximal number of iterations per optimization step
(default: 10)
max_eval (int): maximal number of function evaluations per optimization
step (default: max_iter * 1.25).
tolerance_grad (float): termination tolerance on first order optimality
(default: 1e-5).
tolerance_change (float): termination tolerance on function
value/parameter changes (default: 1e-9).
history_size (int): update history size (default: 7).
line_search_fn: if True, use cubic interpolation to findstep size, if False: fixed step size (default: True)
batch_mode: True for stochastic version (default: False)
cost_use_gradient: set this to True when the cost function also needs the gradient, for example in TV (total variation) regularization. (default: False)
Example usage for full batch mode:
optimizer = LBFGSNew(model.parameters(), history_size=7, max_iter=100, line_search_fn=True, batch_mode=False)
Example usage for batch mode (stochastic):
optimizer = LBFGSNew(net.parameters(), history_size=7, max_iter=4, line_search_fn=True,batch_mode=True)
Note: when using a closure(), only do backward() after checking the gradient is available,
Eg:
def closure():
optimizer.zero_grad()
outputs=net(inputs)
loss=criterion(outputs,labels)
if loss.requires_grad:
loss.backward()
return loss
Note: Some cost functions also use the gradient itself (for example as a regularization term). In this case, you need to set cost_use_gradient=True.
"""
def __init__(self, params, lr=1, max_iter=10, max_eval=None,
tolerance_grad=1e-5, tolerance_change=1e-9, history_size=7,
line_search_fn=True, batch_mode=False, cost_use_gradient=False):
if max_eval is None:
max_eval = max_iter * 5 // 4
defaults = dict(lr=lr, max_iter=max_iter, max_eval=max_eval,
tolerance_grad=tolerance_grad, tolerance_change=tolerance_change,
history_size=history_size, line_search_fn=line_search_fn,
batch_mode=batch_mode, cost_use_gradient=cost_use_gradient)
super(LBFGSNew, self).__init__(params, defaults)
if len(self.param_groups) != 1:
raise ValueError("LBFGS doesn't support per-parameter options "
"(parameter groups)")
self._params = self.param_groups[0]['params']
self._numel_cache = None
def _numel(self):
if self._numel_cache is None:
self._numel_cache = reduce(lambda total, p: total + p.numel(), self._params, 0)
return self._numel_cache
def _gather_flat_grad(self):
views = []
for p in self._params:
if p.grad is None:
view = p.data.new(p.data.numel()).zero_()
elif p.grad.data.is_sparse:
view = p.grad.data.to_dense().contiguous().view(-1)
else:
view = p.grad.data.contiguous().view(-1)
views.append(view)
return torch.cat(views, 0)
def _add_grad(self, step_size, update):
offset = 0
for p in self._params:
numel = p.numel()
# view as to avoid deprecated pointwise semantics
p.data.add_(update[offset:offset + numel].view_as(p.data), alpha=step_size)
offset += numel
assert offset == self._numel()
#FF copy the parameter values out, create a single vector
def _copy_params_out(self):
return [p.detach().clone(memory_format=torch.contiguous_format) for p in self._params]
#FF copy the parameter values back, dividing the vector into a list
def _copy_params_in(self,new_params):
with torch.no_grad():
for p, pdata in zip(self._params, new_params):
p.copy_(pdata)
#FF line search xk=self._params, pk=step direction, gk=gradient, alphabar=max. step size
def _linesearch_backtrack(self,closure,pk,gk,alphabar):
"""Line search (backtracking)
Arguments:
closure (callable): A closure that reevaluates the model
and returns the loss.
pk: step direction vector
gk: gradient vector
alphabar: max step size
"""
# constants (FIXME) find proper values
# c1: large values better for small batch sizes
c1=1e-4
citer=35
alphak=alphabar# default return step
# state parameter
state = self.state[self._params[0]]
# make a copy of original params
xk=self._copy_params_out()
f_old=float(closure())
# param = param + alphak * pk
self._add_grad(alphak, pk)
f_new=float(closure())
# prod = c1 * ( alphak ) * gk^T pk = alphak * prodterm
s=gk
prodterm=c1*(s.dot(pk))
ci=0
if be_verbose:
print('LN %d alpha=%f fnew=%f fold=%f prod=%f'%(ci,alphak,f_new,f_old,prodterm))
# catch cases where f_new is NaN
while (ci<citer and (math.isnan(f_new) or f_new > f_old + alphak*prodterm)):
alphak=0.5*alphak
self._copy_params_in(xk)
self._add_grad(alphak, pk)
f_new=float(closure())
if be_verbose:
print('LN %d alpha=%f fnew=%f fold=%f'%(ci,alphak,f_new,f_old))
ci=ci+1
# if the cost is not sufficiently decreased, also try -ve steps
if (f_old-f_new < torch.abs(prodterm)):
alphak1=-alphabar
self._copy_params_in(xk)
self._add_grad(alphak1, pk)
f_new1=float(closure())
if be_verbose:
print('NLN fnew=%f'%f_new1)
while (ci<citer and (math.isnan(f_new1) or f_new1 > f_old + alphak1*prodterm)):
alphak1=0.5*alphak1
self._copy_params_in(xk)
self._add_grad(alphak1, pk)
f_new1=float(closure())
if be_verbose:
print('NLN %d alpha=%f fnew=%f fold=%f'%(ci,alphak1,f_new1,f_old))
ci=ci+1
if f_new1<f_new:
# select -ve step
alphak=alphak1
# recover original params
self._copy_params_in(xk)
# update state
state['func_evals'] += ci
return alphak
#FF line search xk=self._params, pk=gradient
def _linesearch_cubic(self,closure,pk,step):
"""Line search (strong-Wolfe)
Arguments:
closure (callable): A closure that reevaluates the model
and returns the loss.
pk: gradient vector
step: step size for differencing
"""
# constants
alpha1=10*self.param_groups[0]['lr']#10.0
sigma=0.1
rho=0.01
t1=9
t2=0.1
t3=0.5
alphak=self.param_groups[0]['lr']# default return step
# state parameter
state = self.state[self._params[0]]
# make a copy of original params
xk=self._copy_params_out()
phi_0=float(closure())
tol=min(phi_0*0.01,1e-6)
# xp <- xk+step. pk
self._add_grad(step, pk) #FF param = param + t * grad
p01=float(closure())
# xp <- xk-step. pk
self._add_grad(-2.0*step, pk) #FF param = param - t * grad
p02=float(closure())
##print("p01="+str(p01)+" p02="+str(p02))
gphi_0=(p01-p02)/(2.0*step)
##print("tol="+str(tol)+" phi_0="+str(phi_0)+" gphi_0="+str(gphi_0))
# catch instances when step size is too small
if abs(gphi_0)<1e-12:
return 1.0
mu=(tol-phi_0)/(rho*gphi_0)
# catch if mu is not finite
if math.isnan(mu):
return 1.0
##print("mu="+str(mu))
# counting function evals
closure_evals=3
ci=1
alphai=alpha1 # initial value for alpha(i) : check if 0<alphai<=mu
alphai1=0.0
phi_alphai1=phi_0
while (ci<4) : # FIXME
# evalualte phi(alpha(i))=f(xk+alphai pk)
self._copy_params_in(xk) # original
# xp <- xk+alphai. pk
self._add_grad(alphai, pk) #
phi_alphai=float(closure())
if phi_alphai<tol:
alphak=alphai
if be_verbose:
print("Linesearch: condition 0 met")
break
if (phi_alphai>phi_0+alphai*gphi_0) or (ci>1 and phi_alphai>=phi_alphai1) :
# ai=alphai1, bi=alphai bracket
if be_verbose:
print("bracket "+str(alphai1)+","+str(alphai))
alphak=self._linesearch_zoom(closure,xk,pk,alphai1,alphai,phi_0,gphi_0,sigma,rho,t1,t2,t3,step)
if be_verbose:
print("Linesearch: condition 1 met")
break
# evaluate grad(phi(alpha(i))) */
# note that self._params already is xk+alphai. pk, so only add the missing term
# xp <- xk+(alphai+step). pk
self._add_grad(step, pk) #FF param = param - t * grad
p01=float(closure())
# xp <- xk+(alphai-step). pk
self._add_grad(-2.0*step, pk) #FF param = param - t * grad
p02=float(closure())
gphi_i=(p01-p02)/(2.0*step);
if (abs(gphi_i)<=-sigma*gphi_0):
alphak=alphai
if be_verbose:
print("Linesearch: condition 2 met")
break
if gphi_i>=0.0 :
# ai=alphai, bi=alphai1 bracket
if be_verbose:
print("bracket "+str(alphai)+","+str(alphai1))
alphak=self._linesearch_zoom(closure,xk,pk,alphai,alphai1,phi_0,gphi_0,sigma,rho,t1,t2,t3,step)
if be_verbose:
print("Linesearch: condition 3 met")
break
# else preserve old values
if (mu<=2.0*alphai-alphai1):
alphai1=alphai
alphai=mu
else:
# choose by interpolation in [2*alphai-alphai1,min(mu,alphai+t1*(alphai-alphai1)]
p01=2.0*alphai-alphai1;
p02=min(mu,alphai+t1*(alphai-alphai1))
alphai=self._cubic_interpolate(closure,xk,pk,p01,p02,step)
phi_alphai1=phi_alphai;
# update function evals
closure_evals +=3
ci=ci+1
# recover original params
self._copy_params_in(xk)
# update state
state['func_evals'] += closure_evals
return alphak
def _cubic_interpolate(self,closure,xk,pk,a,b,step):
""" Cubic interpolation within interval [a,b] or [b,a] (a>b is possible)
Arguments:
closure (callable): A closure that reevaluates the model
and returns the loss.
xk: copy of parameter values
pk: gradient vector
a/b: interval for interpolation
step: step size for differencing
"""
self._copy_params_in(xk)
# state parameter
state = self.state[self._params[0]]
# count function evals
closure_evals=0
# xp <- xk+a. pk
self._add_grad(a, pk) #FF param = param + t * grad
f0=float(closure())
# xp <- xk+(a+step). pk
self._add_grad(step, pk) #FF param = param + t * grad
p01=float(closure())
# xp <- xk+(a-step). pk
self._add_grad(-2.0*step, pk) #FF param = param - t * grad
p02=float(closure())
f0d=(p01-p02)/(2.0*step)
# xp <- xk+b. pk
self._add_grad(-a+step+b, pk) #FF param = param + t * grad
f1=float(closure())
# xp <- xk+(b+step). pk
self._add_grad(step, pk) #FF param = param + t * grad
p01=float(closure())
# xp <- xk+(b-step). pk
self._add_grad(-2.0*step, pk) #FF param = param - t * grad
p02=float(closure())
f1d=(p01-p02)/(2.0*step)
closure_evals=6
aa=3.0*(f0-f1)/(b-a)+f1d-f0d
p01=aa*aa-f0d*f1d
if (p01>0.0):
cc=math.sqrt(p01)
#print('f0='+str(f0d)+' f1='+str(f1d)+' cc='+str(cc))
if (f1d-f0d+2.0*cc)==0.0:
return (a+b)*0.5
z0=b-(f1d+cc-aa)*(b-a)/(f1d-f0d+2.0*cc)
aa=max(a,b)
cc=min(a,b)
if z0>aa or z0<cc:
fz0=f0+f1
else:
# xp <- xk+(a+z0*(b-a))*pk
self._add_grad(-b+step+a+z0*(b-a), pk) #FF param = param + t * grad
fz0=float(closure())
closure_evals +=1
# update state
state['func_evals'] += closure_evals
if f0<f1 and f0<fz0:
return a
if f1<fz0:
return b
# else
return z0
else:
# update state
state['func_evals'] += closure_evals
if f0<f1:
return a
else:
return b
# update state
state['func_evals'] += closure_evals
# fallback value
return (a+b)*0.5
#FF bracket [a,b]
# xk: copy of parameters, use it to refresh self._param
def _linesearch_zoom(self,closure,xk,pk,a,b,phi_0,gphi_0,sigma,rho,t1,t2,t3,step):
"""Zoom step in line search
Arguments:
closure (callable): A closure that reevaluates the model
and returns the loss.
xk: copy of parameter values
pk: gradient vector
a/b: bracket interval for line search,
phi_0: phi(0)
gphi_0: grad(phi(0))
sigma,rho,t1,t2,t3: line search parameters (from Fletcher)
step: step size for differencing
"""
# state parameter
state = self.state[self._params[0]]
# count function evals
closure_evals=0
aj=a
bj=b
ci=0
found_step=False
while ci<4: # FIXME original 10
# choose alphaj from [a+t2(b-a),b-t3(b-a)]
p01=aj+t2*(bj-aj)
p02=bj-t3*(bj-aj)
alphaj=self._cubic_interpolate(closure,xk,pk,p01,p02,step)
# evaluate phi(alphaj)
self._copy_params_in(xk)
# xp <- xk+alphaj. pk
self._add_grad(alphaj, pk) #FF param = param + t * grad
phi_j=float(closure())
# evaluate phi(aj)
# xp <- xk+aj. pk
self._add_grad(-alphaj+aj, pk) #FF param = param + t * grad
phi_aj=float(closure())
closure_evals +=2
if (phi_j>phi_0+rho*alphaj*gphi_0) or phi_j>=phi_aj :
bj=alphaj # aj is unchanged
else:
# evaluate grad(alphaj)
# xp <- xk+(alphaj+step). pk
self._add_grad(-aj+alphaj+step, pk) #FF param = param + t * grad
p01=float(closure())
# xp <- xk+(alphaj-step). pk
self._add_grad(-2.0*step, pk) #FF param = param + t * grad
p02=float(closure())
gphi_j=(p01-p02)/(2.0*step)
closure_evals +=2
# termination due to roundoff/other errors pp. 38, Fletcher
if (aj-alphaj)*gphi_j <= step:
alphak=alphaj
found_step=True
break
if abs(gphi_j)<=-sigma*gphi_0 :
alphak=alphaj
found_step=True
break
if gphi_j*(bj-aj)>=0.0:
bj=aj
# else bj is unchanged
aj=alphaj
ci=ci+1
if not found_step:
alphak=alphaj
# update state
state['func_evals'] += closure_evals
return alphak
def step(self, closure):
"""Performs a single optimization step.
Arguments:
closure (callable): A closure that reevaluates the model
and returns the loss.
"""
assert len(self.param_groups) == 1
group = self.param_groups[0]
lr = group['lr']
max_iter = group['max_iter']
max_eval = group['max_eval']
tolerance_grad = group['tolerance_grad']
tolerance_change = group['tolerance_change']
line_search_fn = group['line_search_fn']
history_size = group['history_size']
batch_mode = group['batch_mode']
cost_use_gradient = group['cost_use_gradient']
# NOTE: LBFGS has only global state, but we register it as state for
# the first param, because this helps with casting in load_state_dict
state = self.state[self._params[0]]
state.setdefault('func_evals', 0)
state.setdefault('n_iter', 0)
# evaluate initial f(x) and df/dx
orig_loss = closure()
loss = float(orig_loss)
current_evals = 1
state['func_evals'] += 1
flat_grad = self._gather_flat_grad()
abs_grad_sum = flat_grad.abs().sum()
if torch.isnan(abs_grad_sum) or abs_grad_sum <= tolerance_grad:
return orig_loss
# tensors cached in state (for tracing)
d = state.get('d')
t = state.get('t')
old_dirs = state.get('old_dirs')
old_stps = state.get('old_stps')
H_diag = state.get('H_diag')
prev_flat_grad = state.get('prev_flat_grad')
prev_loss = state.get('prev_loss')
n_iter = 0
if batch_mode:
alphabar=lr
lm0=1e-6
# optimize for a max of max_iter iterations
grad_nrm=flat_grad.norm().item()
while n_iter < max_iter and not math.isnan(grad_nrm):
# keep track of nb of iterations
n_iter += 1
state['n_iter'] += 1
############################################################
# compute gradient descent direction
############################################################
if state['n_iter'] == 1:
d = flat_grad.neg()
old_dirs = []
old_stps = []
H_diag = 1
if batch_mode:
running_avg=torch.zeros_like(flat_grad.data)
running_avg_sq=torch.zeros_like(flat_grad.data)
else:
if batch_mode:
running_avg=state.get('running_avg')
running_avg_sq=state.get('running_avg_sq')
if running_avg is None:
running_avg=torch.zeros_like(flat_grad.data)
running_avg_sq=torch.zeros_like(flat_grad.data)
# do lbfgs update (update memory)
# what happens if current and prev grad are equal, ||y||->0 ??
y = flat_grad.sub(prev_flat_grad)
s = d.mul(t)
if batch_mode: # y = y+ lm0 * s, to have a trust region
y.add_(s,alpha=lm0)
ys = y.dot(s) # y^T*s
sn = s.norm().item() # ||s||
# FIXME batch_changed does not work for full batch mode (data might be the same)
batch_changed= batch_mode and (n_iter==1 and state['n_iter']>1)
if batch_changed: # batch has changed
# online estimate of mean,variance of gradient (inter-batch, not intra-batch)
# newmean <- oldmean + (grad - oldmean)/niter
# moment <- oldmoment + (grad-oldmean)(grad-newmean)
# variance = moment/(niter-1)
g_old=flat_grad.clone(memory_format=torch.contiguous_format)
g_old.add_(running_avg,alpha=-1.0) # grad-oldmean
running_avg.add_(g_old,alpha=1.0/state['n_iter']) # newmean
g_new=flat_grad.clone(memory_format=torch.contiguous_format)
g_new.add_(running_avg,alpha=-1.0) # grad-newmean
running_avg_sq.addcmul_(g_new,g_old,value=1) # +(grad-newmean)(grad-oldmean)
alphabar=1/(1+running_avg_sq.sum()/((state['n_iter']-1)*(grad_nrm)))
if be_verbose:
print('iter %d |mean| %f |var| %f ||grad|| %f step %f y^Ts %f alphabar=%f'%(state['n_iter'],running_avg.sum(),running_avg_sq.sum()/(state['n_iter']-1),grad_nrm,t,ys,alphabar))
if ys > 1e-10*sn*sn and not batch_changed :
# updating memory (only when we have y within a single batch)
if len(old_dirs) == history_size:
# shift history by one (limited-memory)
old_dirs.pop(0)
old_stps.pop(0)
# store new direction/step
old_dirs.append(y)
old_stps.append(s)
# update scale of initial Hessian approximation
H_diag = ys / y.dot(y) # (y*y)
if math.isnan(H_diag):
print('Warning H_diag nan')
# compute the approximate (L-BFGS) inverse Hessian
# multiplied by the gradient
num_old = len(old_dirs)
if 'ro' not in state:
state['ro'] = [None] * history_size
state['al'] = [None] * history_size
ro = state['ro']
al = state['al']
for i in range(num_old):
ro[i] = 1. / old_dirs[i].dot(old_stps[i])
# iteration in L-BFGS loop collapsed to use just one buffer
q = flat_grad.neg()
for i in range(num_old - 1, -1, -1):
al[i] = old_stps[i].dot(q) * ro[i]
q.add_(old_dirs[i],alpha=-al[i])
# multiply by initial Hessian
# r/d is the final direction
d = r = torch.mul(q, H_diag)
for i in range(num_old):
be_i = old_dirs[i].dot(r) * ro[i]
r.add_(old_stps[i],alpha=al[i] - be_i)
if prev_flat_grad is None:
prev_flat_grad = flat_grad.clone(memory_format=torch.contiguous_format)
else:
prev_flat_grad.copy_(flat_grad)
prev_loss = loss
############################################################
# compute step length
############################################################
# reset initial guess for step size
if state['n_iter'] == 1:
t = min(1., 1. / abs_grad_sum) * lr
else:
t = lr
# directional derivative
gtd = flat_grad.dot(d) # g * d
if math.isnan(gtd.item()):
print('Warning grad norm infinite')
print('iter %d'%state['n_iter'])
print('||grad||=%f'%grad_nrm)
print('||d||=%f'%d.norm().item())
# optional line search: user function
ls_func_evals = 0
if line_search_fn:
# perform line search, using user function
##raise RuntimeError("line search function is not supported yet")
#FF#################################
# Note: we disable gradient calculation during line search
# because it is not needed
if not cost_use_gradient:
torch.set_grad_enabled(False)
if not batch_mode:
t=self._linesearch_cubic(closure,d,1e-6)
else:
t=self._linesearch_backtrack(closure,d,flat_grad,alphabar)
if not cost_use_gradient:
torch.set_grad_enabled(True)
if math.isnan(t):
print('Warning: stepsize nan')
t=lr
self._add_grad(t, d) #FF param = param + t * d
if be_verbose:
print('step size=%f'%(t))
#FF#################################
else:
#FF Here, t = stepsize, d = -grad, in cache
# no line search, simply move with fixed-step
self._add_grad(t, d) #FF param = param + t * d
if n_iter != max_iter:
# re-evaluate function only if not in last iteration
# the reason we do this: in a stochastic setting,
# no use to re-evaluate that function here
loss = float(closure())
flat_grad = self._gather_flat_grad()
abs_grad_sum = flat_grad.abs().sum()
if math.isnan(abs_grad_sum):
print('Warning: gradient nan')
break
ls_func_evals = 1
# update func eval
current_evals += ls_func_evals
state['func_evals'] += ls_func_evals
############################################################
# check conditions
############################################################
if n_iter == max_iter:
break
if current_evals >= max_eval:
break
if abs_grad_sum <= tolerance_grad:
break
if gtd > -tolerance_change:
break
if d.mul(t).abs_().sum() <= tolerance_change:
break
if abs(loss - prev_loss) < tolerance_change:
break
state['d'] = d
state['t'] = t
state['old_dirs'] = old_dirs
state['old_stps'] = old_stps
state['H_diag'] = H_diag
state['prev_flat_grad'] = prev_flat_grad
state['prev_loss'] = prev_loss
if batch_mode:
if 'running_avg' not in locals() or running_avg is None:
running_avg=torch.zeros_like(flat_grad.data)
running_avg_sq=torch.zeros_like(flat_grad.data)
state['running_avg']=running_avg
state['running_avg_sq']=running_avg_sq
return orig_loss