-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfiguration.py
48 lines (27 loc) · 1.26 KB
/
configuration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import json
import argparse
splice_df_path = 'dataset/splice_df.csv'
meta_attribute_dict_path = 'dataset/meta_attribute_dict.pkl'
df_attribute_dict_path = 'dataset/df_attribute_dict.pkl'
arff_paths = 'dataset/arff_paths_dict.json'
encoded_unique_dict_path = 'dataset/encoded_unique_values.pkl'
splice_array_path = 'dataset/splice_array.pkl'
# import file paths for all the training datasets here
file_path = 'dataset/arff_paths_dict.json'
with open(file_path, 'r') as path_dict:
arff_paths_dict = json.load(path_dict)
parser = argparse.ArgumentParser(description='Training and evaluation parameters setting.')
##########################################################
# general configuration
parser.add_argument('n_clusters', type=int, help='number of clusters for k means or k modes or k prototypes')
parser.add_argument('n_components', type=int, help= 'number of componets in PCA')
parser.add_argument('--sum', dest='accumulate', action='store_const',
const=sum, default=max,
help='sum the integers (default: find the max)')
print(args.accumulate(args.integers))
n_clusters = 3
max_iteration = 100
init = ''
n_init = 10
random_seeds = [i*1000 - 2 for i in list(range(n_init))]
best_centroids_path = 'best_centroids.pkl'