forked from explosion/spaCy
-
Notifications
You must be signed in to change notification settings - Fork 1
/
util.py
108 lines (87 loc) · 3.39 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# coding: utf-8
from __future__ import unicode_literals
import numpy
import tempfile
import shutil
import contextlib
import srsly
from pathlib import Path
from spacy.tokens import Doc, Span
from spacy.attrs import POS, HEAD, DEP
from spacy.compat import path2str
@contextlib.contextmanager
def make_tempfile(mode="r"):
f = tempfile.TemporaryFile(mode=mode)
yield f
f.close()
@contextlib.contextmanager
def make_tempdir():
d = Path(tempfile.mkdtemp())
yield d
shutil.rmtree(path2str(d))
def get_doc(vocab, words=[], pos=None, heads=None, deps=None, tags=None, ents=None):
"""Create Doc object from given vocab, words and annotations."""
pos = pos or [""] * len(words)
tags = tags or [""] * len(words)
heads = heads or [0] * len(words)
deps = deps or [""] * len(words)
for value in deps + tags + pos:
vocab.strings.add(value)
doc = Doc(vocab, words=words)
attrs = doc.to_array([POS, HEAD, DEP])
for i, (p, head, dep) in enumerate(zip(pos, heads, deps)):
attrs[i, 0] = doc.vocab.strings[p]
attrs[i, 1] = head
attrs[i, 2] = doc.vocab.strings[dep]
doc.from_array([POS, HEAD, DEP], attrs)
if ents:
doc.ents = [
Span(doc, start, end, label=doc.vocab.strings[label])
for start, end, label in ents
]
if tags:
for token in doc:
token.tag_ = tags[token.i]
return doc
def apply_transition_sequence(parser, doc, sequence):
"""Perform a series of pre-specified transitions, to put the parser in a
desired state."""
for action_name in sequence:
if "-" in action_name:
move, label = action_name.split("-")
parser.add_label(label)
with parser.step_through(doc) as stepwise:
for transition in sequence:
stepwise.transition(transition)
def add_vecs_to_vocab(vocab, vectors):
"""Add list of vector tuples to given vocab. All vectors need to have the
same length. Format: [("text", [1, 2, 3])]"""
length = len(vectors[0][1])
vocab.reset_vectors(width=length)
for word, vec in vectors:
vocab.set_vector(word, vector=vec)
return vocab
def get_cosine(vec1, vec2):
"""Get cosine for two given vectors"""
return numpy.dot(vec1, vec2) / (numpy.linalg.norm(vec1) * numpy.linalg.norm(vec2))
def assert_docs_equal(doc1, doc2):
"""Compare two Doc objects and assert that they're equal. Tests for tokens,
tags, dependencies and entities."""
assert [t.orth for t in doc1] == [t.orth for t in doc2]
assert [t.pos for t in doc1] == [t.pos for t in doc2]
assert [t.tag for t in doc1] == [t.tag for t in doc2]
assert [t.head.i for t in doc1] == [t.head.i for t in doc2]
assert [t.dep for t in doc1] == [t.dep for t in doc2]
if doc1.is_parsed and doc2.is_parsed:
assert [s for s in doc1.sents] == [s for s in doc2.sents]
assert [t.ent_type for t in doc1] == [t.ent_type for t in doc2]
assert [t.ent_iob for t in doc1] == [t.ent_iob for t in doc2]
assert [ent for ent in doc1.ents] == [ent for ent in doc2.ents]
def assert_packed_msg_equal(b1, b2):
"""Assert that two packed msgpack messages are equal."""
msg1 = srsly.msgpack_loads(b1)
msg2 = srsly.msgpack_loads(b2)
assert sorted(msg1.keys()) == sorted(msg2.keys())
for (k1, v1), (k2, v2) in zip(sorted(msg1.items()), sorted(msg2.items())):
assert k1 == k2
assert v1 == v2