diff --git a/drizzlepac/haputils/analyze.py b/drizzlepac/haputils/analyze.py index 84f52dc4e..850fa5357 100644 --- a/drizzlepac/haputils/analyze.py +++ b/drizzlepac/haputils/analyze.py @@ -15,22 +15,10 @@ import sys from enum import Enum -from astropy.io import fits from astropy.io.fits import getheader from astropy.table import Table -from astropy.stats import sigma_clipped_stats -import numpy as np - -from photutils.segmentation import SourceCatalog, detect_sources - -from scipy import ndimage -from skimage.transform import probabilistic_hough_line -from skimage.feature import canny from stsci.tools import logutil -from stsci.tools.bitmask import bitfield_to_boolean_mask - -from .astrometric_utils import classify_sources __taskname__ = 'analyze' @@ -55,15 +43,6 @@ CHINKEY = 'CHINJECT' DRIZKEY = 'DRIZCORR' -# These definitions are for ACS and WFC3 -BAD_DQ_FLAGS = [256, # full-well saturated pixel - 512, # bad pixel from reference file - 1024, # weak charge trap - 2048, # A-to-D saturated pixel - 4096 # cosmic-ray -] - -MIN_LINES = 4 # Minimum number of detected lines for consideration of bad guiding # Return codes class Ret_code(Enum): @@ -74,6 +53,7 @@ class Ret_code(Enum): SBCHRC_DATA = 55 NO_VIABLE_DATA = 65 + # Annotates level to which image can be aligned according observational parameters # as described through FITS keywords class Messages(Enum): @@ -173,10 +153,6 @@ def analyze_wrapper(input_file_list, log_level=logutil.logging.DEBUG, use_sbchrc mask = filtered_table["doProcess"] > 0 filtered_table = filtered_table[mask] - # Further reduce table to only the data which is NOT affected by bad guiding - guide_mask = [not verify_guiding(f) for f in filtered_table["imageName"]] - filtered_table = filtered_table[guide_mask] - good_table = None good_rows = [] process_list = [] @@ -497,186 +473,3 @@ def generate_msg(filename, msg, key, value): else: log.warning('Dataset can be aligned, but the result may be compromised.') - -# ----------------------------------------------------------------------------- -# Line detection functions -# ----------------------------------------------------------------------------- - -def verify_guiding(filename, min_length=33): - """ Verify whether or not the input image was affected by guiding problems. - - This algorithm evaluates the data from (SCI,1) to try to determine whether - the image was affected by guiding problems which mimic SCAN mode or GRISM data - with the trails in an arbitrary angle across the image. - - Parameters - ========== - filename : str - Name of image to be evaluated - - min_length : int, optional - Minimum length of trails (in pixels) to be detected in image. - - Returns - ======== - bad_guiding : bool - Boolean specifying whether or not the image was detected as - being affected by guiding problems. Value is True if image - was affected. - """ - log.info(f"Verifying that {filename} was not affected by guiding problems.") - - hdu = fits.open(filename) - data = hdu[("SCI", 1)].data.copy() - scale_data = hdu[("SCI",1)].header["bunit"].endswith('/S') - data = np.nan_to_num(data, nan=0.0) # just to be careful - if scale_data: - # Photutils works best in units of DN - scale_hdr = hdu[0].header if 'exptime' in hdu[0].header else hdu[1].header - scale_val = scale_hdr['exptime'] - data *= scale_val - bkg_stats = sigma_clipped_stats(data, maxiters=2) - bkg_limit = bkg_stats[1] + bkg_stats[2] # only need a 1-sigma detection limit here... - log.debug(f"bkg_limit found to be: {bkg_limit:.2f}") - - data -= bkg_limit - imgarr = np.clip(data, 0, data.max()) - - # Build up a mask of all bad pixels and ignore them when looking for - # sources and linear features - dqarr = None - for extn in hdu: - if 'extname' in extn.header and extn.header['extname'] == 'DQ': - dqarr = hdu[extn].data.copy() - break - if dqarr is not None: - dqmask = bitfield_to_boolean_mask(dqarr, ignore_flags=BAD_DQ_FLAGS) - else: - dqmask = np.ones_like(data) - # close FITS object (just to be nice to the OS...) - hdu.close() - del hdu - - # apply mask now... - imgarr *= dqmask - del dqmask # just to clean up a little - - # Determine rough number of probable sources - # Trying to ignore small sources (<= 4x4 pixels in size, or npixels < 17) - # which are either noise peaks or head-on CRs. - segm = detect_sources(imgarr, 0, npixels=17) - log.debug(f'Detected {segm.nlabels} raw sources in {filename}') - if segm.nlabels < 2: - return False - - src_cat = SourceCatalog(imgarr, segm) - # Remove likely cosmic-rays based on central_moments classification - bad_srcs = classify_sources(src_cat, 1.5) - # Get the label IDs for sources flagged as CRs, IDs are 1-based not 0-based - pt_srcs = np.where(bad_srcs == 0)[0] + 1 - segm.remove_labels(pt_srcs) - src_cat = SourceCatalog(imgarr, segm) # clean up source catalog now... - num_sources = len(src_cat) - - # trim edges from image to avoid spurious sources - trim_slice=(slice(2, -2), slice(2, -2)) - - # Now determine whether this image was affected by guiding problems - bad_guiding = lines_in_image(imgarr[trim_slice], num_sources, - min_length=min_length, min_lines=MIN_LINES) - if bad_guiding: - log.warning(f"Image {filename}'s GUIDING detected as: BAD.") - else: - log.info(f"Image {filename}'s GUIDING detected as: GOOD.") - - return bad_guiding - - -def detect_lines(image, mask=None, min_length=17): - """Detect lines in the input image and return list of line parameters """ - lines = {'num': None, - 'startarr': None, - 'endarr': None, - 'angles': None, - 'lengths': None, - 'slopes': None} - - # extract edges from image for faster line detection - edges = canny(image, sigma=2.5, low_threshold=0, high_threshold=25, mask=mask) - - # Classic straight-line Hough transform - plines = probabilistic_hough_line(edges, threshold=0, - line_gap=0, - line_length=min_length) - if len(plines) > 0: - plines = np.array(plines) - startarr = plines[:, 0] - endarr = plines[:, 1] - rise = endarr[:, 1] - startarr[:, 1] - run = endarr[:, 0]-startarr[:, 0] - angles = np.arctan2(rise, run) - lines['startarr'] = startarr - lines['endarr'] = endarr - lines['angles'] = np.rad2deg(angles) - lines['lengths'] = np.sqrt(rise**2 + run**2) - lines['slopes'] = np.tan(angles + np.pi/2) - lines['num'] = len(plines) - - return lines - - -def lines_in_image(image, num_sources, mask=None, min_length=17, min_lines=4): - """Determine if image is dominated by linear features - - Parameters - ---------- - image : ndarray - Background-subtracted image to detect linear features in - - sensitivity : float, optional - Increments in degrees for detecting lines in image. - - Returns - ------- - lines_detected : bool - Specifies whether or not image is dominated by linear features - """ - # detect any lines in image - lines = detect_lines(image, mask=mask, min_length=min_length) - if lines['num'] is None: - log.debug(f"No linear features found.") - return False - else: - # If we have a lot of sources, we should have a lot of lines if bad - # Otherwise, however, min_lines is used to guard against faint fields - if lines['num'] < max(min_lines, num_sources/10): - log.debug(f"Only {lines['num']} linear features found.") - return False - - # perform statistical analysis on detected linear features - # start by generating a histogram of the angles of all the lines - # We will ignore lines that are exactly in line with a column (+/- 90) - # as they are nearly always caused by CTE or saturation bleeding along the columns. - diff_lines = np.isclose(np.abs(lines['angles']), 90, atol=2.0) - angles = lines['angles'][~diff_lines] - - angle_bins = np.linspace(-180., 180., 91) - ahist = np.histogram(angles, bins=angle_bins) - - # if one peak has a more than 10% of all linear features detected, - # and there are more linear features than lines from saturated columns - # it is considered as having bad guiding. - max_angles = ahist[0].max() - alimit = max(len(angles) / 10.0, diff_lines.sum()) - - log.debug(f"Peak number of similar lines: {max_angles} based on a threshold of {alimit}") - log.debug(f"number of probable sources: {num_sources}") - - # - # TODO: add check against length of lines detected as well - # -- Not sure what stats to use for this check... - # - # Now check to see if enough detected lines have the same (non-90 deg) orientation - lines_detected = (max_angles > alimit) - log.info(f"{max_angles} lines were similar, so linear features were detected.") - return lines_detected diff --git a/drizzlepac/runastrodriz.py b/drizzlepac/runastrodriz.py index 945567ea0..29ac1c9d9 100755 --- a/drizzlepac/runastrodriz.py +++ b/drizzlepac/runastrodriz.py @@ -109,7 +109,6 @@ from drizzlepac import align from drizzlepac import resetbits -from drizzlepac.haputils import analyze from drizzlepac.haputils import astrometric_utils as amutils from drizzlepac.haputils import cell_utils from drizzlepac.haputils import processing_utils @@ -405,22 +404,6 @@ def process(inFile, force=False, newpath=None, num_cores=None, inmemory=True, for f in _calfiles+_calfiles_flc: processing_utils.compute_sregion(f) - # Check to see whether or not guide star failure affected these observations - # They would show up as images all sources streaked as if taken in SCAN mode or with a GRISM - for fltimg in _calfiles: - flcimg = f.replace('_flt.fits', '_flc.fits') - if os.path.exists(flcimg): - fltimg = flcimg - # We want to use the FLC image, if possible, to avoid any - # possible detection of CTE tails as false guide-star trailing lines - bad_guiding = analyze.verify_guiding(fltimg) - if bad_guiding: - # Remove the affected image(s) from further processing - _calfiles.remove(fltimg) - if os.path.exists(flcimg): - _calfiles_flc.remove(flcimg) - - if dcorr == 'PERFORM': """