forked from tpruvot/ccminer
-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathblake32.cu
507 lines (435 loc) · 13.5 KB
/
blake32.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
/**
* Blake-256 Cuda Kernel (Tested on SM 5.0)
*
* Tanguy Pruvot - Nov. 2014
*/
#define PRECALC64 1
#include "miner.h"
extern "C" {
#include "sph/sph_blake.h"
#include <stdint.h>
#include <memory.h>
}
/* threads per block and throughput (intensity) */
#define TPB 128
/* added in sph_blake.c */
extern "C" int blake256_rounds = 14;
/* hash by cpu with blake 256 */
extern "C" void blake256hash(void *output, const void *input, int8_t rounds = 14)
{
uchar hash[64];
sph_blake256_context ctx;
blake256_rounds = rounds;
sph_blake256_init(&ctx);
sph_blake256(&ctx, input, 80);
sph_blake256_close(&ctx, hash);
memcpy(output, hash, 32);
}
#include "cuda_helper.h"
#if PRECALC64
__constant__ uint32_t _ALIGN(32) d_data[12];
#else
__constant__ static uint32_t _ALIGN(32) c_data[20];
/* midstate hash cache, this algo is run on 2 parts */
__device__ static uint32_t cache[8];
__device__ static uint32_t prevsum = 0;
/* crc32.c */
extern "C" uint32_t crc32_u32t(const uint32_t *buf, size_t size);
#endif
/* 8 adapters max (-t threads) */
static uint32_t *d_resNonce[8];
static uint32_t *h_resNonce[8];
/* max count of found nonces in one call */
#define NBN 2
static uint32_t extra_results[NBN] = { UINT32_MAX };
/* prefer uint32_t to prevent size conversions = speed +5/10 % */
__constant__
static uint32_t _ALIGN(32) c_sigma[16][16] = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
{12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
{13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
{10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }
};
#if !PRECALC64
__device__ __constant__
static const uint32_t __align__(32) c_IV256[8] = {
SPH_C32(0x6A09E667), SPH_C32(0xBB67AE85),
SPH_C32(0x3C6EF372), SPH_C32(0xA54FF53A),
SPH_C32(0x510E527F), SPH_C32(0x9B05688C),
SPH_C32(0x1F83D9AB), SPH_C32(0x5BE0CD19)
};
#endif
__device__ __constant__
static const uint32_t __align__(32) c_u256[16] = {
SPH_C32(0x243F6A88), SPH_C32(0x85A308D3),
SPH_C32(0x13198A2E), SPH_C32(0x03707344),
SPH_C32(0xA4093822), SPH_C32(0x299F31D0),
SPH_C32(0x082EFA98), SPH_C32(0xEC4E6C89),
SPH_C32(0x452821E6), SPH_C32(0x38D01377),
SPH_C32(0xBE5466CF), SPH_C32(0x34E90C6C),
SPH_C32(0xC0AC29B7), SPH_C32(0xC97C50DD),
SPH_C32(0x3F84D5B5), SPH_C32(0xB5470917)
};
#define GS(a,b,c,d,x) { \
const uint32_t idx1 = c_sigma[r][x]; \
const uint32_t idx2 = c_sigma[r][x+1]; \
v[a] += (m[idx1] ^ c_u256[idx2]) + v[b]; \
v[d] = SPH_ROTL32(v[d] ^ v[a], 16); \
v[c] += v[d]; \
v[b] = SPH_ROTR32(v[b] ^ v[c], 12); \
\
v[a] += (m[idx2] ^ c_u256[idx1]) + v[b]; \
v[d] = SPH_ROTR32(v[d] ^ v[a], 8); \
v[c] += v[d]; \
v[b] = SPH_ROTR32(v[b] ^ v[c], 7); \
}
/* Second part (64-80) msg never change, store it */
__device__ __constant__
static const uint32_t __align__(32) c_Padding[16] = {
0, 0, 0, 0,
0x80000000UL, 0, 0, 0,
0, 0, 0, 0,
0, 1, 0, 640,
};
__device__ static
void blake256_compress(uint32_t *h, const uint32_t *block, const uint32_t T0, const int rounds)
{
uint32_t /*_ALIGN(8)*/ m[16];
uint32_t v[16];
m[0] = block[0];
m[1] = block[1];
m[2] = block[2];
m[3] = block[3];
for (int i = 4; i < 16; i++) {
#if PRECALC64
m[i] = c_Padding[i];
#else
m[i] = (T0 == 0x200) ? block[i] : c_Padding[i];
#endif
}
//#pragma unroll 8
for(uint32_t i = 0; i < 8; i++)
v[i] = h[i];
v[ 8] = c_u256[0];
v[ 9] = c_u256[1];
v[10] = c_u256[2];
v[11] = c_u256[3];
v[12] = c_u256[4] ^ T0;
v[13] = c_u256[5] ^ T0;
v[14] = c_u256[6];
v[15] = c_u256[7];
for (int r = 0; r < rounds; r++) {
/* column step */
GS(0, 4, 0x8, 0xC, 0x0);
GS(1, 5, 0x9, 0xD, 0x2);
GS(2, 6, 0xA, 0xE, 0x4);
GS(3, 7, 0xB, 0xF, 0x6);
/* diagonal step */
GS(0, 5, 0xA, 0xF, 0x8);
GS(1, 6, 0xB, 0xC, 0xA);
GS(2, 7, 0x8, 0xD, 0xC);
GS(3, 4, 0x9, 0xE, 0xE);
}
#if PRECALC64
// only compute h6 & 7
h[6U] ^= v[6U] ^ v[14U];
h[7U] ^= v[7U] ^ v[15U];
#else
//#pragma unroll 16
for (int i = 0; i < 16; i++) {
uint32_t j = i % 8U;
h[j] ^= v[i];
}
#endif
}
#if !PRECALC64 /* original method */
__global__
void blake256_gpu_hash_80(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce,
const uint64_t highTarget, const int crcsum, const int rounds)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
const uint32_t nonce = startNonce + thread;
uint32_t h[8];
#pragma unroll
for(int i=0; i<8; i++) {
h[i] = c_IV256[i];
}
if (crcsum != prevsum) {
prevsum = crcsum;
blake256_compress(h, c_data, 512, rounds);
#pragma unroll
for(int i=0; i<8; i++) {
cache[i] = h[i];
}
} else {
#pragma unroll
for(int i=0; i<8; i++) {
h[i] = cache[i];
}
}
// ------ Close: Bytes 64 to 80 ------
uint32_t ending[4];
ending[0] = c_data[16];
ending[1] = c_data[17];
ending[2] = c_data[18];
ending[3] = nonce; /* our tested value */
blake256_compress(h, ending, 640, rounds);
// not sure why, h[7] is ok
h[6] = cuda_swab32(h[6]);
// compare count of leading zeros h[6] + h[7]
uint64_t high64 = ((uint64_t*)h)[3];
if (high64 <= highTarget)
#if NBN == 2
/* keep the smallest nonce, + extra one if found */
if (resNonce[0] > nonce) {
// printf("%llx %llx \n", high64, highTarget);
resNonce[1] = resNonce[0];
resNonce[0] = nonce;
}
else
resNonce[1] = nonce;
#else
resNonce[0] = nonce;
#endif
}
}
__host__
uint32_t blake256_cpu_hash_80(const int thr_id, const uint32_t threads, const uint32_t startNonce, const uint64_t highTarget,
const uint32_t crcsum, const int8_t rounds)
{
const int threadsperblock = TPB;
uint32_t result = UINT32_MAX;
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
size_t shared_size = 0;
/* Check error on Ctrl+C or kill to prevent segfaults on exit */
if (cudaMemset(d_resNonce[thr_id], 0xff, NBN*sizeof(uint32_t)) != cudaSuccess)
return result;
blake256_gpu_hash_80<<<grid, block, shared_size>>>(threads, startNonce, d_resNonce[thr_id], highTarget, crcsum, (int) rounds);
cudaDeviceSynchronize();
if (cudaSuccess == cudaMemcpy(h_resNonce[thr_id], d_resNonce[thr_id], NBN*sizeof(uint32_t), cudaMemcpyDeviceToHost)) {
//cudaThreadSynchronize(); /* seems no more required */
result = h_resNonce[thr_id][0];
for (int n=0; n < (NBN-1); n++)
extra_results[n] = h_resNonce[thr_id][n+1];
}
return result;
}
__host__
void blake256_cpu_setBlock_80(uint32_t *pdata, const uint32_t *ptarget)
{
uint32_t data[20];
memcpy(data, pdata, 80);
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_data, data, sizeof(data), 0, cudaMemcpyHostToDevice));
}
#else
/* ############################################################################################################################### */
/* Precalculated 1st 64-bytes block (midstate) method */
__global__
void blake256_gpu_hash_16(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce,
const uint64_t highTarget, const int rounds, const bool trace)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
const uint32_t nonce = startNonce + thread;
uint32_t _ALIGN(16) h[8];
#pragma unroll
for(int i=0; i < 8; i++) {
h[i] = d_data[i];
}
// ------ Close: Bytes 64 to 80 ------
uint32_t _ALIGN(16) ending[4];
ending[0] = d_data[8];
ending[1] = d_data[9];
ending[2] = d_data[10];
ending[3] = nonce; /* our tested value */
blake256_compress(h, ending, 640, rounds);
//if (h[7] == 0 && high64 <= highTarget) {
if (h[7] == 0) {
#if NBN == 2
/* keep the smallest nonce, + extra one if found */
if (resNonce[0] > nonce) {
// printf("%llx %llx \n", high64, highTarget);
resNonce[1] = resNonce[0];
resNonce[0] = nonce;
}
else
resNonce[1] = nonce;
#else
resNonce[0] = nonce;
#endif
if (trace) {
#ifdef _DEBUG
uint64_t high64 = ((uint64_t*)h)[3];
printf("gpu: %16llx\n", high64);
printf("gpu: %08x.%08x\n", h[7], h[6]);
printf("tgt: %16llx\n", highTarget);
#endif
}
}
}
}
__host__
static uint32_t blake256_cpu_hash_16(const int thr_id, const uint32_t threads, const uint32_t startNonce, const uint64_t highTarget,
const int8_t rounds)
{
const int threadsperblock = TPB;
uint32_t result = UINT32_MAX;
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
/* Check error on Ctrl+C or kill to prevent segfaults on exit */
if (cudaMemset(d_resNonce[thr_id], 0xff, NBN*sizeof(uint32_t)) != cudaSuccess)
return result;
blake256_gpu_hash_16 <<<grid, block>>> (threads, startNonce, d_resNonce[thr_id], highTarget, (int) rounds, opt_tracegpu);
cudaDeviceSynchronize();
if (cudaSuccess == cudaMemcpy(h_resNonce[thr_id], d_resNonce[thr_id], NBN*sizeof(uint32_t), cudaMemcpyDeviceToHost)) {
//cudaThreadSynchronize(); /* seems no more required */
result = h_resNonce[thr_id][0];
for (int n=0; n < (NBN-1); n++)
extra_results[n] = h_resNonce[thr_id][n+1];
}
return result;
}
__host__
static void blake256mid(uint32_t *output, const uint32_t *input, int8_t rounds = 14)
{
sph_blake256_context ctx;
/* in sph_blake.c */
blake256_rounds = rounds;
sph_blake256_init(&ctx);
sph_blake256(&ctx, input, 64);
memcpy(output, (void*)ctx.H, 32);
}
__host__
void blake256_cpu_setBlock_16(uint32_t *penddata, const uint32_t *midstate, const uint32_t *ptarget)
{
uint32_t _ALIGN(64) data[11];
memcpy(data, midstate, 32);
data[8] = penddata[0];
data[9] = penddata[1];
data[10]= penddata[2];
CUDA_SAFE_CALL(cudaMemcpyToSymbol(d_data, data, 32 + 12, 0, cudaMemcpyHostToDevice));
}
#endif
extern "C" int scanhash_blake256(int thr_id, uint32_t *pdata, const uint32_t *ptarget,
uint32_t max_nonce, unsigned long *hashes_done, int8_t blakerounds=14)
{
const uint32_t first_nonce = pdata[19];
static bool init[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
uint64_t targetHigh = ((uint64_t*)ptarget)[3];
uint32_t _ALIGN(64) endiandata[20];
#if PRECALC64
uint32_t _ALIGN(64) midstate[8];
#else
uint32_t crcsum;
#endif
int intensity = (device_sm[device_map[thr_id]] > 500) ? 22 : 20;
uint32_t throughput = opt_work_size ? opt_work_size : (1 << intensity);
throughput = min(throughput, max_nonce - first_nonce);
int rc = 0;
#if NBN > 1
if (extra_results[0] != UINT32_MAX) {
// possible extra result found in previous call
if (first_nonce <= extra_results[0] && max_nonce >= extra_results[0]) {
pdata[19] = extra_results[0];
*hashes_done = pdata[19] - first_nonce + 1;
extra_results[0] = UINT32_MAX;
rc = 1;
goto exit_scan;
}
}
#endif
if (opt_benchmark) {
targetHigh = 0x1ULL << 32;
((uint32_t*)ptarget)[6] = swab32(0xff);
}
if (opt_tracegpu) {
/* test call from util.c */
throughput = 1;
for (int k = 0; k < 20; k++)
pdata[k] = swab32(pdata[k]);
}
if (!init[thr_id]) {
if (num_processors > 1)
cudaSetDevice(device_map[thr_id]);
CUDA_CALL_OR_RET_X(cudaMallocHost(&h_resNonce[thr_id], NBN * sizeof(uint32_t)), 0);
CUDA_CALL_OR_RET_X(cudaMalloc(&d_resNonce[thr_id], NBN * sizeof(uint32_t)), 0);
init[thr_id] = true;
}
#if PRECALC64
for (int k = 0; k < 16; k++)
be32enc(&endiandata[k], pdata[k]);
blake256mid(midstate, endiandata, blakerounds);
blake256_cpu_setBlock_16(&pdata[16], midstate, ptarget);
#else
blake256_cpu_setBlock_80(pdata, ptarget);
crcsum = crc32_u32t(pdata, 64);
#endif /* PRECALC64 */
do {
uint32_t foundNonce =
#if PRECALC64
// GPU HASH (second block only, first is midstate)
blake256_cpu_hash_16(thr_id, throughput, pdata[19], targetHigh, blakerounds);
#else
// GPU FULL HASH
blake256_cpu_hash_80(thr_id, throughput, pdata[19], targetHigh, crcsum, blakerounds);
#endif
if (foundNonce != UINT32_MAX)
{
uint32_t vhashcpu[8];
uint32_t Htarg = (uint32_t)targetHigh;
for (int k=0; k < 19; k++)
be32enc(&endiandata[k], pdata[k]);
be32enc(&endiandata[19], foundNonce);
blake256hash(vhashcpu, endiandata, blakerounds);
//applog(LOG_BLUE, "%08x %16llx", vhashcpu[6], targetHigh);
if (vhashcpu[6] <= Htarg /*&& fulltest(vhashcpu, ptarget)*/)
{
pdata[19] = foundNonce;
rc = 1;
if (extra_results[0] != UINT32_MAX) {
// Rare but possible if the throughput is big
be32enc(&endiandata[19], extra_results[0]);
blake256hash(vhashcpu, endiandata, blakerounds);
if (vhashcpu[6] <= Htarg /* && fulltest(vhashcpu, ptarget) */) {
applog(LOG_NOTICE, "GPU found more than one result " CL_GRN "yippee!");
rc = 2;
} else {
extra_results[0] = UINT32_MAX;
}
}
//applog_hash((uint8_t*)ptarget);
//applog_compare_hash((uint8_t*)vhashcpu,(uint8_t*)ptarget);
goto exit_scan;
}
else if (opt_debug) {
applog_hash((uchar*)ptarget);
applog_compare_hash((uchar*)vhashcpu, (uchar*)ptarget);
applog(LOG_DEBUG, "GPU #%d: result for nonce %08x does not validate on CPU!", thr_id, foundNonce);
}
}
if ((uint64_t) pdata[19] + throughput > (uint64_t) max_nonce) {
pdata[19] = max_nonce;
break;
}
pdata[19] += throughput;
} while (!scan_abort_flag && !work_restart[thr_id].restart);
exit_scan:
*hashes_done = pdata[19] - first_nonce + 1; // (+1 to prevent locks)
return rc;
}