forked from keon/algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsudoku_validator.py
84 lines (68 loc) · 2.42 KB
/
sudoku_validator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
"""
Write a function validSolution/ValidateSolution/valid_solution() that accepts a 2D array representing a Sudoku board, and returns true if it is a valid solution, or false otherwise. The cells of the sudoku board may also contain 0's, which will represent empty cells. Boards containing one or more zeroes are considered to be invalid solutions.
The board is always 9 cells by 9 cells, and every cell only contains integers from 0 to 9.
(More info at: http://en.wikipedia.org/wiki/Sudoku)
"""
# Using dict/hash-table
from collections import defaultdict
def valid_solution_hashtable(board):
for i in range(len(board)):
dict_row = defaultdict(int)
dict_col = defaultdict(int)
for j in range(len(board[0])):
value_row = board[i][j]
value_col = board[j][i]
if not value_row or value_col == 0:
return False
if value_row in dict_row:
return False
else:
dict_row[value_row] += 1
if value_col in dict_col:
return False
else:
dict_col[value_col] += 1
for i in range(3):
for j in range(3):
grid_add = 0
for k in range(3):
for l in range(3):
grid_add += board[i*3+k][j*3+l]
if grid_add != 45:
return False
return True
# Without hash-table/dict
def valid_solution(board):
correct = [1, 2, 3, 4, 5, 6, 7, 8, 9]
# check rows
for row in board:
if sorted(row) != correct:
return False
# check columns
for column in zip(*board):
if sorted(column) != correct:
return False
# check regions
for i in range(3):
for j in range(3):
region = []
for line in board[i*3:(i+1)*3]:
region += line[j*3:(j+1)*3]
if sorted(region) != correct:
return False
# if everything correct
return True
# Using set
def valid_solution_set (board):
valid = set(range(1, 10))
for row in board:
if set(row) != valid:
return False
for col in [[row[i] for row in board] for i in range(9)]:
if set(col) != valid:
return False
for x in range(3):
for y in range(3):
if set(sum([row[x*3:(x+1)*3] for row in board[y*3:(y+1)*3]], [])) != valid:
return False
return True