forked from hagabbar/cnn_matchfiltering
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunCNN.sh
executable file
·85 lines (70 loc) · 2.8 KB
/
runCNN.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#!/bin/bash
# Use GPU:
# May need flags
#export THEANO_FLAGS="mode=FAST_RUN,device=cuda0,floatX=float32,gpuarray.preallocate=0.9"
#export CPATH=$CPATH:/home/2136420/theanoenv/include
#export LIBRARY_PATH=$LIBRARY_PATH:/home/2136420/theanoenv/lib
#export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/2136420/theanoenv/lib
export CUDA_VISIBLE_DEVICES=0
#####################
# Running the network
#####################
# To run network call this file followed by snr and mass dist:
# ./runCNN.sh <snr> <training mass dist> <val/test mass dist>
# eg:
# ./runCNN.sh 8 metricmass metricmass
# options for mass dist are currently:
# - metricmass
# - astromass
# Location and name of training/validation/test sets:
# set for use on deimos
training_dataset=/home/hunter.gabbard/glasgow/github_repo_code/cnn_matchfiltering/data/BBH_training_1s_8192Hz_10Ksamp_25n_iSNR${1}_Hdet_${2}_1seed_ts_0.sav
val_dataset=/home/hunter.gabbard/glasgow/github_repo_code/cnn_matchfiltering/data/BBH_validation_1s_8192Hz_10Ksamp_25n_iSNR${1}_Hdet_${3}_1seed_ts_0.sav
test_dataset=/home/hunter.gabbard/glasgow/github_repo_code/cnn_matchfiltering/data/BBH_testing_1s_8192Hz_10Ksamp_25n_iSNR${1}_Hdet_${3}_1seed_ts_0.sav
Nts=100000 # Number of time series
Nval=10000 # Number of time series for validation/testing
Ntot=10
# Learning constraints:
learning_rate=0.001
max_learning_rate=0.005
decay=0.0
stepsize=1000
momentum=0.9
n_epochs=200
batch_size=1000
patience=10
LRpatience=5
outdir="./history"
# update function to use
opt="Nadam"
# parameters for particular optimizers
nesterov=true
rho=0.9
epsilon=0.000000001
beta_1=0.9
beta_2=0.999
###########################################
# 'features' operations:
# o covolutional layer + max-pooling -> 1
# o fully connected layer -> 0
# o classification -> 4
###########################################
features="1,1,1,1,1,1,1,1,0,4"
nkerns="8,16,16,32,64,64,128,128,64,2"
filter_size="1-32,1-16,1-16,1-16,1-8,1-8,1-4,1-4"
filter_stride="1-1,1-1,1-1,1-1,1-1,1-1,1-1,1-1,1-1"
dilation="1-1,1-1,1-1,1-1,1-1,1-1,1-1,1-1"
pooling="1,0,0,0,1,0,0,1"
pool_size="1-8,1-1,1-1,1-1,1-6,1-1,1-1,1-4"
pool_stride="1-8,1-1,1-1,1-1,1-6,1-1,1-1,1-4"
dropout="0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.5,0.0"
functions="elu,elu,elu,elu,elu,elu,elu,elu,elu,softmax"
./CNN-keras.py -SNR=${1} -Nts=$Nts -Ntot=$Ntot -Nval=$Nval \
-Trd=$training_dataset -Vald=$val_dataset -Tsd=$test_dataset -bs=$batch_size\
-opt=$opt -lr=$learning_rate -mlr=$max_learning_rate -NE=$n_epochs -dy=$decay \
-ss=$stepsize -mn=$momentum --nesterov=$nesterov --rho=$rho --epsilon=$epsilon \
--beta_1=$beta_1 --beta_2=$beta_2 -pt=$patience -lpt=$LRpatience \
-f=$features -nf=$nkerns -fs=$filter_size -fst=$filter_stride -fpd=$filter_pad \
-dl=$dilation -p=$pooling -ps=$pool_size -pst=$pool_stride -ppd=$pool_pad \
-dp=$dropout -fn=$functions \
-od=$outdir