forked from to82350/Viva-Pro.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict.py
315 lines (252 loc) · 11.7 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import os
import logging
import argparse
from tqdm import tqdm, trange
import time
import sys
import numpy as np
import torch
from torch.utils.data import TensorDataset, DataLoader, SequentialSampler
from transformers import ElectraForTokenClassification
from utils import init_logger, load_tokenizer
from processors import get_labels
from konlpy.tag import Mecab
import pymysql
import json
logger = logging.getLogger(__name__)
with open(r'./config.json', 'r') as f:
config = json.load(f)
def get_device(pred_config):
return "cuda" if torch.cuda.is_available() and not pred_config.no_cuda else "cpu"
def get_args(pred_config):
return torch.load(os.path.join(pred_config.output_dir, 'training_args.bin'))
def load_model(pred_config, args, device):
# Check whether model exists
if not os.path.exists(pred_config.output_dir):
raise Exception("Model doesn't exists! Train first!")
try:
# Config will be automatically loaded from output_dir
model = ElectraForTokenClassification.from_pretrained(args.output_dir)
model.to(device)
model.eval()
logger.info("***** Model Loaded *****")
except:
raise Exception("Some model files might be missing...")
return model
def read_input_file(pred_config, curs, conn):
lines = []
with open(pred_config.input_file, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
words = line.split()
lines.append(words)
sql = f'INSERT INTO SENTENCE SELECT "{userid}", (SELECT COUNT(*) FROM SENTENCE WHERE Uid="{userid}"), NOW(), "{line}", ""'
curs.execute(sql)
conn.commit()
return lines
def convert_input_file_to_tensor_dataset(lines,
pred_config,
args,
tokenizer,
pad_token_label_id,
cls_token_segment_id=0,
pad_token_segment_id=0,
sequence_a_segment_id=0,
mask_padding_with_zero=True):
# Setting based on the current model type
cls_token = tokenizer.cls_token
sep_token = tokenizer.sep_token
unk_token = tokenizer.unk_token
pad_token_id = tokenizer.pad_token_id
all_input_ids = []
all_attention_mask = []
all_token_type_ids = []
all_slot_label_mask = []
for words in lines:
tokens = []
slot_label_mask = []
for word in words:
word_tokens = tokenizer.tokenize(word)
if not word_tokens:
word_tokens = [unk_token] # For handling the bad-encoded word
tokens.extend(word_tokens)
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
slot_label_mask.extend(
[0] + [pad_token_label_id] * (len(word_tokens) - 1))
# Account for [CLS] and [SEP]
special_tokens_count = 2
if len(tokens) > args.max_seq_len - special_tokens_count:
tokens = tokens[: (args.max_seq_len - special_tokens_count)]
slot_label_mask = slot_label_mask[:(
args.max_seq_len - special_tokens_count)]
# Add [SEP] token
tokens += [sep_token]
token_type_ids = [sequence_a_segment_id] * len(tokens)
slot_label_mask += [pad_token_label_id]
# Add [CLS] token
tokens = [cls_token] + tokens
token_type_ids = [cls_token_segment_id] + token_type_ids
slot_label_mask = [pad_token_label_id] + slot_label_mask
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real tokens are attended to.
attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
# Zero-pad up to the sequence length.
padding_length = args.max_seq_len - len(input_ids)
input_ids = input_ids + ([pad_token_id] * padding_length)
attention_mask = attention_mask + \
([0 if mask_padding_with_zero else 1] * padding_length)
token_type_ids = token_type_ids + \
([pad_token_segment_id] * padding_length)
slot_label_mask = slot_label_mask + \
([pad_token_label_id] * padding_length)
all_input_ids.append(input_ids)
all_attention_mask.append(attention_mask)
all_token_type_ids.append(token_type_ids)
all_slot_label_mask.append(slot_label_mask)
# Change to Tensor
all_input_ids = torch.tensor(all_input_ids, dtype=torch.long)
all_attention_mask = torch.tensor(all_attention_mask, dtype=torch.long)
all_token_type_ids = torch.tensor(all_token_type_ids, dtype=torch.long)
all_slot_label_mask = torch.tensor(all_slot_label_mask, dtype=torch.long)
dataset = TensorDataset(all_input_ids, all_attention_mask,
all_token_type_ids, all_slot_label_mask)
return dataset
def predict(pred_config):
conn = pymysql.connect(host=config['mysql']['host'], user=config['mysql']['user'], password=config['mysql']['password'], db=config['mysql']['database'])
curs = conn.cursor()
sql = f'SELECT COUNT(*) FROM SENTENCE WHERE Uid="{userid}"'
curs.execute(sql)
Wnumber = curs.fetchone()[0]
# load model and args
args = get_args(pred_config)
device = get_device(pred_config)
model = load_model(pred_config, args, device)
label_lst = get_labels(args)
logger.info(args)
# Convert input file to TensorDataset
pad_token_label_id = torch.nn.CrossEntropyLoss().ignore_index
tokenizer = load_tokenizer(args)
lines = read_input_file(pred_config, curs, conn)
dataset = convert_input_file_to_tensor_dataset(
lines, pred_config, args, tokenizer, pad_token_label_id)
# Predict
sampler = SequentialSampler(dataset)
data_loader = DataLoader(dataset, sampler=sampler,
batch_size=pred_config.batch_size)
all_slot_label_mask = None
preds = None
for batch in tqdm(data_loader, desc="Predicting"):
batch = tuple(t.to(device) for t in batch)
with torch.no_grad():
inputs = {"input_ids": batch[0],
"attention_mask": batch[1],
"labels": None}
if args.model_type != "distilkobert":
inputs["token_type_ids"] = batch[2]
outputs = model(**inputs)
logits = outputs[0]
if preds is None:
preds = logits.detach().cpu().numpy()
all_slot_label_mask = batch[3].detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
all_slot_label_mask = np.append(
all_slot_label_mask, batch[3].detach().cpu().numpy(), axis=0)
preds = np.argmax(preds, axis=2)
slot_label_map = {i: label for i, label in enumerate(label_lst)}
preds_list = [[] for _ in range(preds.shape[0])]
for i in range(preds.shape[0]):
for j in range(preds.shape[1]):
if all_slot_label_mask[i, j] != pad_token_label_id:
preds_list[i].append(slot_label_map[preds[i][j]])
# Write to output file
with open(pred_config.output_file, "w", encoding="utf-8") as f:
for words, preds in zip(lines, preds_list):
line = ""
Wid = 0
for word, pred in zip(words, preds):
if pred == 'O':
line = line + word + " "
else:
line = line + "[{}:{}] ".format(word, pred)
mecab = Mecab()
str3 = line.strip()
li = mecab.pos(str3)
res1 = list(filter(lambda x: li[x][0] == '[', range(len(li))))
res2 = list(filter(lambda x: li[x][0] == ']', range(len(li))))
k = 0
for i in range(0, len(res1)):
for j in range(res1[i]+1+k, res2[i]+k):
ix = res2[i]+1
if li[j][1] == 'JKS' or li[j][1] == 'JKC' or li[j][1] == 'JKG' or li[j][1] == 'JKO' or li[j][1] == 'JKB' or li[j][1] == 'JKV' or li[j][1] == 'JKQ' or li[j][1] == 'JX' or li[j][1] == 'JC' or li[j][1] == 'VCP+EF' or li[j][1] == 'VCP' or li[j][1] == 'EF' or li[j][0] == ',' or li[j][0] == '.':
temp_str = li[j][0]
li.insert(ix+k, (temp_str, 'AAA'))
k = k + 1
for i in range(0, len(res1)):
j = res1[i]
while j < res2[i] + 1:
if li[j][1] == 'JKS' or li[j][1] == 'JKC' or li[j][1] == 'JKG' or li[j][1] == 'JKO' or li[j][1] == 'JKB' or li[j][1] == 'JKV' or li[j][1] == 'JKQ' or li[j][1] == 'JX' or li[j][1] == 'JC' or li[j][1] == 'VCP+EF' or li[j][1] == 'VCP' or li[j][1] == 'EF' or li[j][0] == ',' or li[j][0] == '.':
del li[j]
res1 = list(
filter(lambda x: li[x][0] == '[', range(len(li))))
res2 = list(
filter(lambda x: li[x][0] == ']', range(len(li))))
j = res1[i]
else:
j = j + 1
str4 = ''
for i in range(0, len(li)):
str4 = str4 + li[i][0]
ix = list(filter(lambda x: str3[x] == ' ', range(len(str3))))
str4_list = list(str4)
for i in ix:
str4_list.insert(i, ' ')
final_str = ''
for i in range(0, len(str4_list)):
final_str = final_str + str4_list[i]
f.write("{}\n".format(final_str))
sql = f'UPDATE SENTENCE SET Sresult = "{final_str}" WHERE Uid = "{userid}" AND Snumber = {Wnumber}'
curs.execute(sql)
conn.commit()
Wspos_list = list()
Wepos_list = list()
for i in range(len(final_str)):
if final_str[i] == '[':
Wspos_list.append(i - (len(Wspos_list) * 7))
elif final_str[i] == ':':
Wepos_list.append(i - (len(Wepos_list) * 7) - 1)
tag_pos = 0
for Wform, Wtag in zip(words, preds):
if Wtag == 'O':
sql = f'INSERT INTO WORD VALUES("{userid}", {Wnumber}, {Wid}, NULL, NULL, "{Wform}", "O")'
curs.execute(sql)
else:
sql = f'INSERT INTO WORD VALUES("{userid}", {Wnumber}, {Wid}, {Wspos_list[tag_pos]}, {Wepos_list[tag_pos]}, "{Wform}", "{Wtag}")'
tag_pos += 1
curs.execute(sql)
Wid += 1
conn.commit()
logger.info("Prediction Done!")
if __name__ == "__main__":
init_logger()
parser = argparse.ArgumentParser()
input = config['path']['input']
output = config['path']['output']
model = config['path']['model_path']
parser.add_argument("--input_file", default=input,
type=str, help="Input file for prediction")
parser.add_argument("--output_file", default=output,
type=str, help="Output file for prediction")
parser.add_argument("--output_dir", default=model,
type=str, help="Path to save, load model")
parser.add_argument("--batch_size", default=32, type=int,
help="Batch size for prediction")
parser.add_argument("--no_cuda", action="store_true",
help="Avoid using CUDA when available")
parser.add_argument("userid", type=str)
pred_config = parser.parse_args()
userid = pred_config.userid
if(userid == ''):
userid = 'visitor'
else: userid = pred_config.userid
predict(pred_config)