forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utility.py
275 lines (254 loc) · 9.23 KB
/
utility.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import ast
import PIL
from PIL import Image, ImageDraw, ImageFont
import numpy as np
from tools.infer.utility import (
draw_ocr_box_txt,
str2bool,
str2int_tuple,
init_args as infer_args,
)
import math
def init_args():
parser = infer_args()
# params for output
parser.add_argument("--output", type=str, default="./output")
# params for table structure
parser.add_argument("--table_max_len", type=int, default=488)
parser.add_argument("--table_algorithm", type=str, default="TableAttn")
parser.add_argument("--table_model_dir", type=str)
parser.add_argument("--merge_no_span_structure", type=str2bool, default=True)
parser.add_argument(
"--table_char_dict_path",
type=str,
default="../ppocr/utils/dict/table_structure_dict_ch.txt",
)
# params for layout
parser.add_argument("--layout_model_dir", type=str)
parser.add_argument(
"--layout_dict_path",
type=str,
default="../ppocr/utils/dict/layout_dict/layout_publaynet_dict.txt",
)
parser.add_argument(
"--layout_score_threshold", type=float, default=0.5, help="Threshold of score."
)
parser.add_argument(
"--layout_nms_threshold", type=float, default=0.5, help="Threshold of nms."
)
# params for kie
parser.add_argument("--kie_algorithm", type=str, default="LayoutXLM")
parser.add_argument("--ser_model_dir", type=str)
parser.add_argument("--re_model_dir", type=str)
parser.add_argument("--use_visual_backbone", type=str2bool, default=True)
parser.add_argument(
"--ser_dict_path", type=str, default="../train_data/XFUND/class_list_xfun.txt"
)
# need to be None or tb-yx
parser.add_argument("--ocr_order_method", type=str, default=None)
# params for inference
parser.add_argument(
"--mode",
type=str,
choices=["structure", "kie"],
default="structure",
help="structure and kie is supported",
)
parser.add_argument(
"--image_orientation",
type=bool,
default=False,
help="Whether to enable image orientation recognition",
)
parser.add_argument(
"--layout",
type=str2bool,
default=True,
help="Whether to enable layout analysis",
)
parser.add_argument(
"--table",
type=str2bool,
default=True,
help="In the forward, whether the table area uses table recognition",
)
parser.add_argument(
"--ocr",
type=str2bool,
default=True,
help="In the forward, whether the non-table area is recognition by ocr",
)
# param for recovery
parser.add_argument(
"--recovery",
type=str2bool,
default=False,
help="Whether to enable layout of recovery",
)
parser.add_argument(
"--use_pdf2docx_api",
type=str2bool,
default=False,
help="Whether to use pdf2docx api",
)
parser.add_argument(
"--invert",
type=str2bool,
default=False,
help="Whether to invert image before processing",
)
parser.add_argument(
"--binarize",
type=str2bool,
default=False,
help="Whether to threshold binarize image before processing",
)
parser.add_argument(
"--alphacolor",
type=str2int_tuple,
default=(255, 255, 255),
help="Replacement color for the alpha channel, if the latter is present; R,G,B integers",
)
return parser
def parse_args():
parser = init_args()
return parser.parse_args()
def draw_structure_result(image, result, font_path):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
boxes, txts, scores = [], [], []
img_layout = image.copy()
draw_layout = ImageDraw.Draw(img_layout)
text_color = (255, 255, 255)
text_background_color = (80, 127, 255)
catid2color = {}
font_size = 15
font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
for region in result:
if region["type"] not in catid2color:
box_color = (
random.randint(0, 255),
random.randint(0, 255),
random.randint(0, 255),
)
catid2color[region["type"]] = box_color
else:
box_color = catid2color[region["type"]]
box_layout = region["bbox"]
draw_layout.rectangle(
[(box_layout[0], box_layout[1]), (box_layout[2], box_layout[3])],
outline=box_color,
width=3,
)
if int(PIL.__version__.split(".")[0]) < 10:
text_w, text_h = font.getsize(region["type"])
else:
left, top, right, bottom = font.getbbox(region["type"])
text_w, text_h = right - left, bottom - top
draw_layout.rectangle(
[
(box_layout[0], box_layout[1]),
(box_layout[0] + text_w, box_layout[1] + text_h),
],
fill=text_background_color,
)
draw_layout.text(
(box_layout[0], box_layout[1]), region["type"], fill=text_color, font=font
)
if region["type"] == "table":
pass
else:
for text_result in region["res"]:
boxes.append(np.array(text_result["text_region"]))
txts.append(text_result["text"])
scores.append(text_result["confidence"])
if "text_word_region" in text_result:
for word_region in text_result["text_word_region"]:
char_box = word_region
box_height = int(
math.sqrt(
(char_box[0][0] - char_box[3][0]) ** 2
+ (char_box[0][1] - char_box[3][1]) ** 2
)
)
box_width = int(
math.sqrt(
(char_box[0][0] - char_box[1][0]) ** 2
+ (char_box[0][1] - char_box[1][1]) ** 2
)
)
if box_height == 0 or box_width == 0:
continue
boxes.append(word_region)
txts.append("")
scores.append(1.0)
im_show = draw_ocr_box_txt(
img_layout, boxes, txts, scores, font_path=font_path, drop_score=0
)
return im_show
def cal_ocr_word_box(rec_str, box, rec_word_info):
"""Calculate the detection frame for each word based on the results of recognition and detection of ocr"""
col_num, word_list, word_col_list, state_list = rec_word_info
box = box.tolist()
bbox_x_start = box[0][0]
bbox_x_end = box[1][0]
bbox_y_start = box[0][1]
bbox_y_end = box[2][1]
cell_width = (bbox_x_end - bbox_x_start) / col_num
word_box_list = []
word_box_content_list = []
cn_width_list = []
cn_col_list = []
for word, word_col, state in zip(word_list, word_col_list, state_list):
if state == "cn":
if len(word_col) != 1:
char_seq_length = (word_col[-1] - word_col[0] + 1) * cell_width
char_width = char_seq_length / (len(word_col) - 1)
cn_width_list.append(char_width)
cn_col_list += word_col
word_box_content_list += word
else:
cell_x_start = bbox_x_start + int(word_col[0] * cell_width)
cell_x_end = bbox_x_start + int((word_col[-1] + 1) * cell_width)
cell = (
(cell_x_start, bbox_y_start),
(cell_x_end, bbox_y_start),
(cell_x_end, bbox_y_end),
(cell_x_start, bbox_y_end),
)
word_box_list.append(cell)
word_box_content_list.append("".join(word))
if len(cn_col_list) != 0:
if len(cn_width_list) != 0:
avg_char_width = np.mean(cn_width_list)
else:
avg_char_width = (bbox_x_end - bbox_x_start) / len(rec_str)
for center_idx in cn_col_list:
center_x = (center_idx + 0.5) * cell_width
cell_x_start = max(int(center_x - avg_char_width / 2), 0) + bbox_x_start
cell_x_end = (
min(int(center_x + avg_char_width / 2), bbox_x_end - bbox_x_start)
+ bbox_x_start
)
cell = (
(cell_x_start, bbox_y_start),
(cell_x_end, bbox_y_start),
(cell_x_end, bbox_y_end),
(cell_x_start, bbox_y_end),
)
word_box_list.append(cell)
return word_box_content_list, word_box_list