forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict_table.py
241 lines (210 loc) · 8.38 KB
/
predict_table.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, "..")))
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, "../..")))
os.environ["FLAGS_allocator_strategy"] = "auto_growth"
import cv2
import copy
import logging
import numpy as np
import time
import tools.infer.predict_rec as predict_rec
import tools.infer.predict_det as predict_det
import tools.infer.utility as utility
from tools.infer.predict_system import sorted_boxes
from ppocr.utils.utility import get_image_file_list, check_and_read
from ppocr.utils.logging import get_logger
from ppstructure.table.matcher import TableMatch
from ppstructure.table.table_master_match import TableMasterMatcher
from ppstructure.utility import parse_args
import ppstructure.table.predict_structure as predict_strture
logger = get_logger()
def expand(pix, det_box, shape):
x0, y0, x1, y1 = det_box
# print(shape)
h, w, c = shape
tmp_x0 = x0 - pix
tmp_x1 = x1 + pix
tmp_y0 = y0 - pix
tmp_y1 = y1 + pix
x0_ = tmp_x0 if tmp_x0 >= 0 else 0
x1_ = tmp_x1 if tmp_x1 <= w else w
y0_ = tmp_y0 if tmp_y0 >= 0 else 0
y1_ = tmp_y1 if tmp_y1 <= h else h
return x0_, y0_, x1_, y1_
class TableSystem(object):
def __init__(self, args, text_detector=None, text_recognizer=None):
self.args = args
if not args.show_log:
logger.setLevel(logging.INFO)
benchmark_tmp = False
if args.benchmark:
benchmark_tmp = args.benchmark
args.benchmark = False
self.text_detector = (
predict_det.TextDetector(copy.deepcopy(args))
if text_detector is None
else text_detector
)
self.text_recognizer = (
predict_rec.TextRecognizer(copy.deepcopy(args))
if text_recognizer is None
else text_recognizer
)
if benchmark_tmp:
args.benchmark = True
self.table_structurer = predict_strture.TableStructurer(args)
if args.table_algorithm in ["TableMaster"]:
self.match = TableMasterMatcher()
else:
self.match = TableMatch(filter_ocr_result=True)
(
self.predictor,
self.input_tensor,
self.output_tensors,
self.config,
) = utility.create_predictor(args, "table", logger)
def __call__(self, img, return_ocr_result_in_table=False):
result = dict()
time_dict = {"det": 0, "rec": 0, "table": 0, "all": 0, "match": 0}
start = time.time()
structure_res, elapse = self._structure(copy.deepcopy(img))
result["cell_bbox"] = structure_res[1].tolist()
time_dict["table"] = elapse
dt_boxes, rec_res, det_elapse, rec_elapse = self._ocr(copy.deepcopy(img))
time_dict["det"] = det_elapse
time_dict["rec"] = rec_elapse
if return_ocr_result_in_table:
result["boxes"] = [x.tolist() for x in dt_boxes]
result["rec_res"] = rec_res
tic = time.time()
pred_html = self.match(structure_res, dt_boxes, rec_res)
toc = time.time()
time_dict["match"] = toc - tic
result["html"] = pred_html
end = time.time()
time_dict["all"] = end - start
return result, time_dict
def _structure(self, img):
structure_res, elapse = self.table_structurer(copy.deepcopy(img))
return structure_res, elapse
def _ocr(self, img):
h, w = img.shape[:2]
dt_boxes, det_elapse = self.text_detector(copy.deepcopy(img))
dt_boxes = sorted_boxes(dt_boxes)
r_boxes = []
for box in dt_boxes:
x_min = max(0, box[:, 0].min() - 1)
x_max = min(w, box[:, 0].max() + 1)
y_min = max(0, box[:, 1].min() - 1)
y_max = min(h, box[:, 1].max() + 1)
box = [x_min, y_min, x_max, y_max]
r_boxes.append(box)
dt_boxes = np.array(r_boxes)
logger.debug("dt_boxes num : {}, elapse : {}".format(len(dt_boxes), det_elapse))
if dt_boxes is None:
return None, None
img_crop_list = []
for i in range(len(dt_boxes)):
det_box = dt_boxes[i]
x0, y0, x1, y1 = expand(2, det_box, img.shape)
text_rect = img[int(y0) : int(y1), int(x0) : int(x1), :]
img_crop_list.append(text_rect)
rec_res, rec_elapse = self.text_recognizer(img_crop_list)
logger.debug("rec_res num : {}, elapse : {}".format(len(rec_res), rec_elapse))
return dt_boxes, rec_res, det_elapse, rec_elapse
def to_excel(html_table, excel_path):
from tablepyxl import tablepyxl
tablepyxl.document_to_xl(html_table, excel_path)
def main(args):
image_file_list = get_image_file_list(args.image_dir)
image_file_list = image_file_list[args.process_id :: args.total_process_num]
os.makedirs(args.output, exist_ok=True)
table_sys = TableSystem(args)
img_num = len(image_file_list)
f_html = open(os.path.join(args.output, "show.html"), mode="w", encoding="utf-8")
f_html.write("<html>\n<body>\n")
f_html.write('<table border="1">\n')
f_html.write(
'<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />'
)
f_html.write("<tr>\n")
f_html.write("<td>img name\n")
f_html.write("<td>ori image</td>")
f_html.write("<td>table html</td>")
f_html.write("<td>cell box</td>")
f_html.write("</tr>\n")
for i, image_file in enumerate(image_file_list):
logger.info("[{}/{}] {}".format(i, img_num, image_file))
img, flag, _ = check_and_read(image_file)
excel_path = os.path.join(
args.output, os.path.basename(image_file).split(".")[0] + ".xlsx"
)
if not flag:
img = cv2.imread(image_file)
if img is None:
logger.error("error in loading image:{}".format(image_file))
continue
starttime = time.time()
pred_res, _ = table_sys(img)
pred_html = pred_res["html"]
logger.info(pred_html)
to_excel(pred_html, excel_path)
logger.info("excel saved to {}".format(excel_path))
elapse = time.time() - starttime
logger.info("Predict time : {:.3f}s".format(elapse))
if len(pred_res["cell_bbox"]) > 0 and len(pred_res["cell_bbox"][0]) == 4:
img = predict_strture.draw_rectangle(image_file, pred_res["cell_bbox"])
else:
img = utility.draw_boxes(img, pred_res["cell_bbox"])
img_save_path = os.path.join(args.output, os.path.basename(image_file))
cv2.imwrite(img_save_path, img)
f_html.write("<tr>\n")
f_html.write(f"<td> {os.path.basename(image_file)} <br/>\n")
f_html.write(f'<td><img src="{image_file}" width=640></td>\n')
f_html.write(
'<td><table border="1">'
+ pred_html.replace("<html><body><table>", "").replace(
"</table></body></html>", ""
)
+ "</table></td>\n"
)
f_html.write(f'<td><img src="{os.path.basename(image_file)}" width=640></td>\n')
f_html.write("</tr>\n")
f_html.write("</table>\n")
f_html.close()
if args.benchmark:
table_sys.table_structurer.autolog.report()
if __name__ == "__main__":
args = parse_args()
if args.use_mp:
import subprocess
p_list = []
total_process_num = args.total_process_num
for process_id in range(total_process_num):
cmd = (
[sys.executable, "-u"]
+ sys.argv
+ ["--process_id={}".format(process_id), "--use_mp={}".format(False)]
)
p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout)
p_list.append(p)
for p in p_list:
p.wait()
else:
main(args)