forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rec_srn_loss.py
47 lines (37 loc) · 1.77 KB
/
rec_srn_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import nn
class SRNLoss(nn.Layer):
def __init__(self, **kwargs):
super(SRNLoss, self).__init__()
self.loss_func = paddle.nn.loss.CrossEntropyLoss(reduction="sum")
def forward(self, predicts, batch):
predict = predicts["predict"]
word_predict = predicts["word_out"]
gsrm_predict = predicts["gsrm_out"]
label = batch[1]
casted_label = paddle.cast(x=label, dtype="int64")
casted_label = paddle.reshape(x=casted_label, shape=[-1, 1])
cost_word = self.loss_func(word_predict, label=casted_label)
cost_gsrm = self.loss_func(gsrm_predict, label=casted_label)
cost_vsfd = self.loss_func(predict, label=casted_label)
cost_word = paddle.reshape(x=paddle.sum(cost_word), shape=[1])
cost_gsrm = paddle.reshape(x=paddle.sum(cost_gsrm), shape=[1])
cost_vsfd = paddle.reshape(x=paddle.sum(cost_vsfd), shape=[1])
sum_cost = cost_word * 3.0 + cost_vsfd + cost_gsrm * 0.15
return {"loss": sum_cost, "word_loss": cost_word, "img_loss": cost_vsfd}