forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rec_parseq_loss.py
52 lines (43 loc) · 1.71 KB
/
rec_parseq_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import nn
class ParseQLoss(nn.Layer):
def __init__(self, **kwargs):
super(ParseQLoss, self).__init__()
def forward(self, predicts, targets):
label = targets[1] # label
label_len = targets[2]
max_step = paddle.max(label_len).cpu().numpy()[0] + 2
tgt = label[:, :max_step]
logits_list = predicts["logits_list"]
pad_id = predicts["pad_id"]
eos_id = predicts["eos_id"]
tgt_out = tgt[:, 1:]
loss = 0
loss_numel = 0
n = (tgt_out != pad_id).sum().item()
for i, logits in enumerate(logits_list):
loss += n * paddle.nn.functional.cross_entropy(
input=logits, label=tgt_out.flatten(), ignore_index=pad_id
)
loss_numel += n
if i == 1:
tgt_out = paddle.where(condition=tgt_out == eos_id, x=pad_id, y=tgt_out)
n = (tgt_out != pad_id).sum().item()
loss /= loss_numel
return {"loss": loss}