forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
det_pse_loss.py
158 lines (137 loc) · 5.51 KB
/
det_pse_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/whai362/PSENet/blob/python3/models/head/psenet_head.py
"""
import paddle
from paddle import nn
from paddle.nn import functional as F
import numpy as np
from ppocr.utils.iou import iou
class PSELoss(nn.Layer):
def __init__(
self,
alpha,
ohem_ratio=3,
kernel_sample_mask="pred",
reduction="sum",
eps=1e-6,
**kwargs,
):
"""Implement PSE Loss."""
super(PSELoss, self).__init__()
assert reduction in ["sum", "mean", "none"]
self.alpha = alpha
self.ohem_ratio = ohem_ratio
self.kernel_sample_mask = kernel_sample_mask
self.reduction = reduction
self.eps = eps
def forward(self, outputs, labels):
predicts = outputs["maps"]
predicts = F.interpolate(predicts, scale_factor=4)
texts = predicts[:, 0, :, :]
kernels = predicts[:, 1:, :, :]
gt_texts, gt_kernels, training_masks = labels[1:]
# text loss
selected_masks = self.ohem_batch(texts, gt_texts, training_masks)
loss_text = self.dice_loss(texts, gt_texts, selected_masks)
iou_text = iou(
(texts > 0).astype("int64"), gt_texts, training_masks, reduce=False
)
losses = dict(loss_text=loss_text, iou_text=iou_text)
# kernel loss
loss_kernels = []
if self.kernel_sample_mask == "gt":
selected_masks = gt_texts * training_masks
elif self.kernel_sample_mask == "pred":
selected_masks = (F.sigmoid(texts) > 0.5).astype("float32") * training_masks
for i in range(kernels.shape[1]):
kernel_i = kernels[:, i, :, :]
gt_kernel_i = gt_kernels[:, i, :, :]
loss_kernel_i = self.dice_loss(kernel_i, gt_kernel_i, selected_masks)
loss_kernels.append(loss_kernel_i)
loss_kernels = paddle.mean(paddle.stack(loss_kernels, axis=1), axis=1)
iou_kernel = iou(
(kernels[:, -1, :, :] > 0).astype("int64"),
gt_kernels[:, -1, :, :],
training_masks * gt_texts,
reduce=False,
)
losses.update(dict(loss_kernels=loss_kernels, iou_kernel=iou_kernel))
loss = self.alpha * loss_text + (1 - self.alpha) * loss_kernels
losses["loss"] = loss
if self.reduction == "sum":
losses = {x: paddle.sum(v) for x, v in losses.items()}
elif self.reduction == "mean":
losses = {x: paddle.mean(v) for x, v in losses.items()}
return losses
def dice_loss(self, input, target, mask):
input = F.sigmoid(input)
input = input.reshape([input.shape[0], -1])
target = target.reshape([target.shape[0], -1])
mask = mask.reshape([mask.shape[0], -1])
input = input * mask
target = target * mask
a = paddle.sum(input * target, 1)
b = paddle.sum(input * input, 1) + self.eps
c = paddle.sum(target * target, 1) + self.eps
d = (2 * a) / (b + c)
return 1 - d
def ohem_single(self, score, gt_text, training_mask, ohem_ratio=3):
pos_num = int(paddle.sum((gt_text > 0.5).astype("float32"))) - int(
paddle.sum(
paddle.logical_and((gt_text > 0.5), (training_mask <= 0.5)).astype(
"float32"
)
)
)
if pos_num == 0:
selected_mask = training_mask
selected_mask = selected_mask.reshape(
[1, selected_mask.shape[0], selected_mask.shape[1]]
).astype("float32")
return selected_mask
neg_num = int(paddle.sum((gt_text <= 0.5).astype("float32")))
neg_num = int(min(pos_num * ohem_ratio, neg_num))
if neg_num == 0:
selected_mask = training_mask
selected_mask = selected_mask.reshape(
[1, selected_mask.shape[0], selected_mask.shape[1]]
).astype("float32")
return selected_mask
neg_score = paddle.masked_select(score, gt_text <= 0.5)
neg_score_sorted = paddle.sort(-neg_score)
threshold = -neg_score_sorted[neg_num - 1]
selected_mask = paddle.logical_and(
paddle.logical_or((score >= threshold), (gt_text > 0.5)),
(training_mask > 0.5),
)
selected_mask = selected_mask.reshape(
[1, selected_mask.shape[0], selected_mask.shape[1]]
).astype("float32")
return selected_mask
def ohem_batch(self, scores, gt_texts, training_masks, ohem_ratio=3):
selected_masks = []
for i in range(scores.shape[0]):
selected_masks.append(
self.ohem_single(
scores[i, :, :],
gt_texts[i, :, :],
training_masks[i, :, :],
ohem_ratio,
)
)
selected_masks = paddle.concat(selected_masks, 0).astype("float32")
return selected_masks