forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
det_fce_loss.py
240 lines (202 loc) · 9.03 KB
/
det_fce_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/losses/fce_loss.py
"""
import numpy as np
from paddle import nn
import paddle
import paddle.nn.functional as F
from functools import partial
def multi_apply(func, *args, **kwargs):
pfunc = partial(func, **kwargs) if kwargs else func
map_results = map(pfunc, *args)
return tuple(map(list, zip(*map_results)))
class FCELoss(nn.Layer):
"""The class for implementing FCENet loss
FCENet(CVPR2021): Fourier Contour Embedding for Arbitrary-shaped
Text Detection
[https://arxiv.org/abs/2104.10442]
Args:
fourier_degree (int) : The maximum Fourier transform degree k.
num_sample (int) : The sampling points number of regression
loss. If it is too small, fcenet tends to be overfitting.
ohem_ratio (float): the negative/positive ratio in OHEM.
"""
def __init__(self, fourier_degree, num_sample, ohem_ratio=3.0):
super().__init__()
self.fourier_degree = fourier_degree
self.num_sample = num_sample
self.ohem_ratio = ohem_ratio
def forward(self, preds, labels):
assert isinstance(preds, dict)
preds = preds["levels"]
p3_maps, p4_maps, p5_maps = labels[1:]
assert (
p3_maps[0].shape[0] == 4 * self.fourier_degree + 5
), "fourier degree not equal in FCEhead and FCEtarget"
# to tensor
gts = [p3_maps, p4_maps, p5_maps]
for idx, maps in enumerate(gts):
gts[idx] = paddle.to_tensor(np.stack(maps))
losses = multi_apply(self.forward_single, preds, gts)
loss_tr = paddle.to_tensor(0.0).astype("float32")
loss_tcl = paddle.to_tensor(0.0).astype("float32")
loss_reg_x = paddle.to_tensor(0.0).astype("float32")
loss_reg_y = paddle.to_tensor(0.0).astype("float32")
loss_all = paddle.to_tensor(0.0).astype("float32")
for idx, loss in enumerate(losses):
loss_all += sum(loss)
if idx == 0:
loss_tr += sum(loss)
elif idx == 1:
loss_tcl += sum(loss)
elif idx == 2:
loss_reg_x += sum(loss)
else:
loss_reg_y += sum(loss)
results = dict(
loss=loss_all,
loss_text=loss_tr,
loss_center=loss_tcl,
loss_reg_x=loss_reg_x,
loss_reg_y=loss_reg_y,
)
return results
def forward_single(self, pred, gt):
cls_pred = paddle.transpose(pred[0], (0, 2, 3, 1))
reg_pred = paddle.transpose(pred[1], (0, 2, 3, 1))
gt = paddle.transpose(gt, (0, 2, 3, 1))
k = 2 * self.fourier_degree + 1
tr_pred = paddle.reshape(cls_pred[:, :, :, :2], (-1, 2))
tcl_pred = paddle.reshape(cls_pred[:, :, :, 2:], (-1, 2))
x_pred = paddle.reshape(reg_pred[:, :, :, 0:k], (-1, k))
y_pred = paddle.reshape(reg_pred[:, :, :, k : 2 * k], (-1, k))
tr_mask = gt[:, :, :, :1].reshape([-1])
tcl_mask = gt[:, :, :, 1:2].reshape([-1])
train_mask = gt[:, :, :, 2:3].reshape([-1])
x_map = paddle.reshape(gt[:, :, :, 3 : 3 + k], (-1, k))
y_map = paddle.reshape(gt[:, :, :, 3 + k :], (-1, k))
tr_train_mask = (train_mask * tr_mask).astype("bool")
tr_train_mask2 = paddle.concat(
[tr_train_mask.unsqueeze(1), tr_train_mask.unsqueeze(1)], axis=1
)
# tr loss
loss_tr = self.ohem(tr_pred, tr_mask, train_mask)
# tcl loss
loss_tcl = paddle.to_tensor(0.0).astype("float32")
tr_neg_mask = tr_train_mask.logical_not()
tr_neg_mask2 = paddle.concat(
[tr_neg_mask.unsqueeze(1), tr_neg_mask.unsqueeze(1)], axis=1
)
if tr_train_mask.sum().item() > 0:
loss_tcl_pos = F.cross_entropy(
tcl_pred.masked_select(tr_train_mask2).reshape([-1, 2]),
tcl_mask.masked_select(tr_train_mask).astype("int64"),
)
loss_tcl_neg = F.cross_entropy(
tcl_pred.masked_select(tr_neg_mask2).reshape([-1, 2]),
tcl_mask.masked_select(tr_neg_mask).astype("int64"),
)
loss_tcl = loss_tcl_pos + 0.5 * loss_tcl_neg
# regression loss
loss_reg_x = paddle.to_tensor(0.0).astype("float32")
loss_reg_y = paddle.to_tensor(0.0).astype("float32")
if tr_train_mask.sum().item() > 0:
weight = (
tr_mask.masked_select(tr_train_mask.astype("bool")).astype("float32")
+ tcl_mask.masked_select(tr_train_mask.astype("bool")).astype("float32")
) / 2
weight = weight.reshape([-1, 1])
ft_x, ft_y = self.fourier2poly(x_map, y_map)
ft_x_pre, ft_y_pre = self.fourier2poly(x_pred, y_pred)
dim = ft_x.shape[1]
tr_train_mask3 = paddle.concat(
[tr_train_mask.unsqueeze(1) for i in range(dim)], axis=1
)
loss_reg_x = paddle.mean(
weight
* F.smooth_l1_loss(
ft_x_pre.masked_select(tr_train_mask3).reshape([-1, dim]),
ft_x.masked_select(tr_train_mask3).reshape([-1, dim]),
reduction="none",
)
)
loss_reg_y = paddle.mean(
weight
* F.smooth_l1_loss(
ft_y_pre.masked_select(tr_train_mask3).reshape([-1, dim]),
ft_y.masked_select(tr_train_mask3).reshape([-1, dim]),
reduction="none",
)
)
return loss_tr, loss_tcl, loss_reg_x, loss_reg_y
def ohem(self, predict, target, train_mask):
pos = (target * train_mask).astype("bool")
neg = ((1 - target) * train_mask).astype("bool")
pos2 = paddle.concat([pos.unsqueeze(1), pos.unsqueeze(1)], axis=1)
neg2 = paddle.concat([neg.unsqueeze(1), neg.unsqueeze(1)], axis=1)
n_pos = pos.astype("float32").sum()
if n_pos.item() > 0:
loss_pos = F.cross_entropy(
predict.masked_select(pos2).reshape([-1, 2]),
target.masked_select(pos).astype("int64"),
reduction="sum",
)
loss_neg = F.cross_entropy(
predict.masked_select(neg2).reshape([-1, 2]),
target.masked_select(neg).astype("int64"),
reduction="none",
)
n_neg = min(
int(neg.astype("float32").sum().item()),
int(self.ohem_ratio * n_pos.astype("float32")),
)
else:
loss_pos = paddle.to_tensor(0.0)
loss_neg = F.cross_entropy(
predict.masked_select(neg2).reshape([-1, 2]),
target.masked_select(neg).astype("int64"),
reduction="none",
)
n_neg = 100
if len(loss_neg) > n_neg:
loss_neg, _ = paddle.topk(loss_neg, n_neg)
return (loss_pos + loss_neg.sum()) / (n_pos + n_neg).astype("float32")
def fourier2poly(self, real_maps, imag_maps):
"""Transform Fourier coefficient maps to polygon maps.
Args:
real_maps (tensor): A map composed of the real parts of the
Fourier coefficients, whose shape is (-1, 2k+1)
imag_maps (tensor):A map composed of the imag parts of the
Fourier coefficients, whose shape is (-1, 2k+1)
Returns
x_maps (tensor): A map composed of the x value of the polygon
represented by n sample points (xn, yn), whose shape is (-1, n)
y_maps (tensor): A map composed of the y value of the polygon
represented by n sample points (xn, yn), whose shape is (-1, n)
"""
k_vect = paddle.arange(
-self.fourier_degree, self.fourier_degree + 1, dtype="float32"
).reshape([-1, 1])
i_vect = paddle.arange(0, self.num_sample, dtype="float32").reshape([1, -1])
transform_matrix = 2 * np.pi / self.num_sample * paddle.matmul(k_vect, i_vect)
x1 = paddle.einsum("ak, kn-> an", real_maps, paddle.cos(transform_matrix))
x2 = paddle.einsum("ak, kn-> an", imag_maps, paddle.sin(transform_matrix))
y1 = paddle.einsum("ak, kn-> an", real_maps, paddle.sin(transform_matrix))
y2 = paddle.einsum("ak, kn-> an", imag_maps, paddle.cos(transform_matrix))
x_maps = x1 - x2
y_maps = y1 + y2
return x_maps, y_maps