forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
basic_loss.py
247 lines (210 loc) · 7.83 KB
/
basic_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import L1Loss
from paddle.nn import MSELoss as L2Loss
from paddle.nn import SmoothL1Loss
class CELoss(nn.Layer):
def __init__(self, epsilon=None):
super().__init__()
if epsilon is not None and (epsilon <= 0 or epsilon >= 1):
epsilon = None
self.epsilon = epsilon
def _labelsmoothing(self, target, class_num):
if target.shape[-1] != class_num:
one_hot_target = F.one_hot(target, class_num)
else:
one_hot_target = target
soft_target = F.label_smooth(one_hot_target, epsilon=self.epsilon)
soft_target = paddle.reshape(soft_target, shape=[-1, class_num])
return soft_target
def forward(self, x, label):
loss_dict = {}
if self.epsilon is not None:
class_num = x.shape[-1]
label = self._labelsmoothing(label, class_num)
x = -F.log_softmax(x, axis=-1)
loss = paddle.sum(x * label, axis=-1)
else:
if label.shape[-1] == x.shape[-1]:
label = F.softmax(label, axis=-1)
soft_label = True
else:
soft_label = False
loss = F.cross_entropy(x, label=label, soft_label=soft_label)
return loss
class KLJSLoss(object):
def __init__(self, mode="kl"):
assert mode in [
"kl",
"js",
"KL",
"JS",
], "mode can only be one of ['kl', 'KL', 'js', 'JS']"
self.mode = mode
def __call__(self, p1, p2, reduction="mean", eps=1e-5):
if self.mode.lower() == "kl":
loss = paddle.multiply(p2, paddle.log((p2 + eps) / (p1 + eps) + eps))
loss += paddle.multiply(p1, paddle.log((p1 + eps) / (p2 + eps) + eps))
loss *= 0.5
elif self.mode.lower() == "js":
loss = paddle.multiply(
p2, paddle.log((2 * p2 + eps) / (p1 + p2 + eps) + eps)
)
loss += paddle.multiply(
p1, paddle.log((2 * p1 + eps) / (p1 + p2 + eps) + eps)
)
loss *= 0.5
else:
raise ValueError(
"The mode.lower() if KLJSLoss should be one of ['kl', 'js']"
)
if reduction == "mean":
loss = paddle.mean(loss, axis=[1, 2])
elif reduction == "none" or reduction is None:
return loss
else:
loss = paddle.sum(loss, axis=[1, 2])
return loss
class DMLLoss(nn.Layer):
"""
DMLLoss
"""
def __init__(self, act=None, use_log=False):
super().__init__()
if act is not None:
assert act in ["softmax", "sigmoid"]
if act == "softmax":
self.act = nn.Softmax(axis=-1)
elif act == "sigmoid":
self.act = nn.Sigmoid()
else:
self.act = None
self.use_log = use_log
self.jskl_loss = KLJSLoss(mode="kl")
def _kldiv(self, x, target):
eps = 1.0e-10
loss = target * (paddle.log(target + eps) - x)
# batch mean loss
loss = paddle.sum(loss) / loss.shape[0]
return loss
def forward(self, out1, out2):
if self.act is not None:
out1 = self.act(out1) + 1e-10
out2 = self.act(out2) + 1e-10
if self.use_log:
# for recognition distillation, log is needed for feature map
log_out1 = paddle.log(out1)
log_out2 = paddle.log(out2)
loss = (self._kldiv(log_out1, out2) + self._kldiv(log_out2, out1)) / 2.0
else:
# for detection distillation log is not needed
loss = self.jskl_loss(out1, out2)
return loss
class DistanceLoss(nn.Layer):
"""
DistanceLoss:
mode: loss mode
"""
def __init__(self, mode="l2", **kargs):
super().__init__()
assert mode in ["l1", "l2", "smooth_l1"]
if mode == "l1":
self.loss_func = nn.L1Loss(**kargs)
elif mode == "l2":
self.loss_func = nn.MSELoss(**kargs)
elif mode == "smooth_l1":
self.loss_func = nn.SmoothL1Loss(**kargs)
def forward(self, x, y):
return self.loss_func(x, y)
class LossFromOutput(nn.Layer):
def __init__(self, key="loss", reduction="none"):
super().__init__()
self.key = key
self.reduction = reduction
def forward(self, predicts, batch):
loss = predicts
if self.key is not None and isinstance(predicts, dict):
loss = loss[self.key]
if self.reduction == "mean":
loss = paddle.mean(loss)
elif self.reduction == "sum":
loss = paddle.sum(loss)
return {"loss": loss}
class KLDivLoss(nn.Layer):
"""
KLDivLoss
"""
def __init__(self):
super().__init__()
def _kldiv(self, x, target, mask=None):
eps = 1.0e-10
loss = target * (paddle.log(target + eps) - x)
if mask is not None:
loss = loss.flatten(0, 1).sum(axis=1)
loss = loss.masked_select(mask).mean()
else:
# batch mean loss
loss = paddle.sum(loss) / loss.shape[0]
return loss
def forward(self, logits_s, logits_t, mask=None):
log_out_s = F.log_softmax(logits_s, axis=-1)
out_t = F.softmax(logits_t, axis=-1)
loss = self._kldiv(log_out_s, out_t, mask)
return loss
class DKDLoss(nn.Layer):
"""
KLDivLoss
"""
def __init__(self, temperature=1.0, alpha=1.0, beta=1.0):
super().__init__()
self.temperature = temperature
self.alpha = alpha
self.beta = beta
def _cat_mask(self, t, mask1, mask2):
t1 = (t * mask1).sum(axis=1, keepdim=True)
t2 = (t * mask2).sum(axis=1, keepdim=True)
rt = paddle.concat([t1, t2], axis=1)
return rt
def _kl_div(self, x, label, mask=None):
y = (label * (paddle.log(label + 1e-10) - x)).sum(axis=1)
if mask is not None:
y = y.masked_select(mask).mean()
else:
y = y.mean()
return y
def forward(self, logits_student, logits_teacher, target, mask=None):
gt_mask = F.one_hot(target.reshape([-1]), num_classes=logits_student.shape[-1])
other_mask = 1 - gt_mask
logits_student = logits_student.flatten(0, 1)
logits_teacher = logits_teacher.flatten(0, 1)
pred_student = F.softmax(logits_student / self.temperature, axis=1)
pred_teacher = F.softmax(logits_teacher / self.temperature, axis=1)
pred_student = self._cat_mask(pred_student, gt_mask, other_mask)
pred_teacher = self._cat_mask(pred_teacher, gt_mask, other_mask)
log_pred_student = paddle.log(pred_student)
tckd_loss = self._kl_div(log_pred_student, pred_teacher) * (self.temperature**2)
pred_teacher_part2 = F.softmax(
logits_teacher / self.temperature - 1000.0 * gt_mask, axis=1
)
log_pred_student_part2 = F.log_softmax(
logits_student / self.temperature - 1000.0 * gt_mask, axis=1
)
nckd_loss = self._kl_div(log_pred_student_part2, pred_teacher_part2) * (
self.temperature**2
)
loss = self.alpha * tckd_loss + self.beta * nckd_loss
return loss