Skip to content

Latest commit

 

History

History
113 lines (80 loc) · 3.75 KB

algorithm_rec_srn_en.md

File metadata and controls

113 lines (80 loc) · 3.75 KB

SRN

1. Introduction

Paper:

Towards Accurate Scene Text Recognition with Semantic Reasoning Networks Deli Yu, Xuan Li, Chengquan Zhang, Junyu Han, Jingtuo Liu, Errui Ding CVPR,2020

Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets, the algorithm reproduction effect is as follows:

Model Backbone config Acc Download link
SRN Resnet50_vd_fpn rec_r50_fpn_srn.yml 86.31% train model

2. Environment

Please refer to "Environment Preparation" to configure the PaddleOCR environment, and refer to "Project Clone" to clone the project code.

3. Model Training / Evaluation / Prediction

Please refer to Text Recognition Tutorial. PaddleOCR modularizes the code, and training different recognition models only requires changing the configuration file.

Training:

Specifically, after the data preparation is completed, the training can be started. The training command is as follows:

#Single GPU training (long training period, not recommended)
python3 tools/train.py -c configs/rec/rec_r50_fpn_srn.yml

#Multi GPU training, specify the gpu number through the --gpus parameter
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/rec/rec_r50_fpn_srn.yml

Evaluation:

# GPU evaluation
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r50_fpn_srn.yml -o Global.pretrained_model={path/to/weights}/best_accuracy

Prediction:

# The configuration file used for prediction must match the training
python3 tools/infer_rec.py -c configs/rec/rec_r50_fpn_srn.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png

4. Inference and Deployment

4.1 Python Inference

First, the model saved during the SRN text recognition training process is converted into an inference model. ( Model download link ), you can use the following command to convert:

python3 tools/export_model.py -c configs/rec/rec_r50_fpn_srn.yml -o Global.pretrained_model=./rec_r50_vd_srn_train/best_accuracy  Global.save_inference_dir=./inference/rec_srn

For SRN text recognition model inference, the following commands can be executed:

python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_srn/" --rec_image_shape="1,64,256" --rec_char_type="ch" --rec_algorithm="SRN" --rec_char_dict_path="ppocr/utils/ic15_dict.txt" --use_space_char=False

4.2 C++ Inference

Not supported

4.3 Serving

Not supported

4.4 More

Not supported

5. FAQ

Citation

@article{Yu2020TowardsAS,
  title={Towards Accurate Scene Text Recognition With Semantic Reasoning Networks},
  author={Deli Yu and Xuan Li and Chengquan Zhang and Junyu Han and Jingtuo Liu and Errui Ding},
  journal={2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2020},
  pages={12110-12119}
}