- 1. Introduction
- 2. Environment
- 3. Model Training / Evaluation / Prediction
- 4. Inference and Deployment
- 5. FAQ
- 6. Release Note
Paper:
NRTR: A No-Recurrence Sequence-to-Sequence Model For Scene Text Recognition Fenfen Sheng and Zhineng Chen and Bo Xu ICDAR, 2019
Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets, the algorithm reproduction effect is as follows:
Model | Backbone | config | Acc | Download link |
---|---|---|---|---|
NRTR | MTB | rec_mtb_nrtr.yml | 84.21% | trained model |
Please refer to "Environment Preparation" to configure the PaddleOCR environment, and refer to "Project Clone" to clone the project code.
Please refer to Text Recognition Tutorial. PaddleOCR modularizes the code, and training different recognition models only requires changing the configuration file.
Training:
Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
#Single GPU training (long training period, not recommended)
python3 tools/train.py -c configs/rec/rec_mtb_nrtr.yml
#Multi GPU training, specify the gpu number through the --gpus parameter
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_mtb_nrtr.yml
Evaluation:
# GPU evaluation
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_mtb_nrtr.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
Prediction:
# The configuration file used for prediction must match the training
python3 tools/infer_rec.py -c configs/rec/rec_mtb_nrtr.yml -o Global.infer_img='./doc/imgs_words_en/word_10.png' Global.pretrained_model=./rec_mtb_nrtr_train/best_accuracy
First, the model saved during the NRTR text recognition training process is converted into an inference model. ( Model download link) ), you can use the following command to convert:
python3 tools/export_model.py -c configs/rec/rec_mtb_nrtr.yml -o Global.pretrained_model=./rec_mtb_nrtr_train/best_accuracy Global.save_inference_dir=./inference/rec_mtb_nrtr
Note:
- If you are training the model on your own dataset and have modified the dictionary file, please pay attention to modify the
character_dict_path
in the configuration file to the modified dictionary file. - If you modified the input size during training, please modify the
infer_shape
corresponding to NRTR in thetools/export_model.py
file.
After the conversion is successful, there are three files in the directory:
/inference/rec_mtb_nrtr/
├── inference.pdiparams
├── inference.pdiparams.info
└── inference.pdmodel
For NRTR text recognition model inference, the following commands can be executed:
python3 tools/infer/predict_rec.py --image_dir='./doc/imgs_words_en/word_10.png' --rec_model_dir='./inference/rec_mtb_nrtr/' --rec_algorithm='NRTR' --rec_image_shape='1,32,100' --rec_char_dict_path='./ppocr/utils/EN_symbol_dict.txt'
After executing the command, the prediction result (recognized text and score) of the image above is printed to the screen, an example is as follows: The result is as follows:
Predicts of ./doc/imgs_words_en/word_10.png:('pain', 0.9465042352676392)
Not supported
Not supported
Not supported
- In the
NRTR
paper, Beam search is used to decode characters, but the speed is slow. Beam search is not used by default here, and greedy search is used to decode characters.
- The release/2.6 version updates the NRTR code structure. The new version of NRTR can load the model parameters of the old version (release/2.5 and before), and you may use the following code to convert the old version model parameters to the new version model parameters:
params = paddle.load('path/' + '.pdparams') # the old version parameters
state_dict = model.state_dict() # the new version model parameters
new_state_dict = {}
for k1, v1 in state_dict.items():
k = k1
if 'encoder' in k and 'self_attn' in k and 'qkv' in k and 'weight' in k:
k_para = k[:13] + 'layers.' + k[13:]
q = params[k_para.replace('qkv', 'conv1')].transpose((1, 0, 2, 3))
k = params[k_para.replace('qkv', 'conv2')].transpose((1, 0, 2, 3))
v = params[k_para.replace('qkv', 'conv3')].transpose((1, 0, 2, 3))
new_state_dict[k1] = np.concatenate([q[:, :, 0, 0], k[:, :, 0, 0], v[:, :, 0, 0]], -1)
elif 'encoder' in k and 'self_attn' in k and 'qkv' in k and 'bias' in k:
k_para = k[:13] + 'layers.' + k[13:]
q = params[k_para.replace('qkv', 'conv1')]
k = params[k_para.replace('qkv', 'conv2')]
v = params[k_para.replace('qkv', 'conv3')]
new_state_dict[k1] = np.concatenate([q, k, v], -1)
elif 'encoder' in k and 'self_attn' in k and 'out_proj' in k:
k_para = k[:13] + 'layers.' + k[13:]
new_state_dict[k1] = params[k_para]
elif 'encoder' in k and 'norm3' in k:
k_para = k[:13] + 'layers.' + k[13:]
new_state_dict[k1] = params[k_para.replace('norm3', 'norm2')]
elif 'encoder' in k and 'norm1' in k:
k_para = k[:13] + 'layers.' + k[13:]
new_state_dict[k1] = params[k_para]
elif 'decoder' in k and 'self_attn' in k and 'qkv' in k and 'weight' in k:
k_para = k[:13] + 'layers.' + k[13:]
q = params[k_para.replace('qkv', 'conv1')].transpose((1, 0, 2, 3))
k = params[k_para.replace('qkv', 'conv2')].transpose((1, 0, 2, 3))
v = params[k_para.replace('qkv', 'conv3')].transpose((1, 0, 2, 3))
new_state_dict[k1] = np.concatenate([q[:, :, 0, 0], k[:, :, 0, 0], v[:, :, 0, 0]], -1)
elif 'decoder' in k and 'self_attn' in k and 'qkv' in k and 'bias' in k:
k_para = k[:13] + 'layers.' + k[13:]
q = params[k_para.replace('qkv', 'conv1')]
k = params[k_para.replace('qkv', 'conv2')]
v = params[k_para.replace('qkv', 'conv3')]
new_state_dict[k1] = np.concatenate([q, k, v], -1)
elif 'decoder' in k and 'self_attn' in k and 'out_proj' in k:
k_para = k[:13] + 'layers.' + k[13:]
new_state_dict[k1] = params[k_para]
elif 'decoder' in k and 'cross_attn' in k and 'q' in k and 'weight' in k:
k_para = k[:13] + 'layers.' + k[13:]
k_para = k_para.replace('cross_attn', 'multihead_attn')
q = params[k_para.replace('q', 'conv1')].transpose((1, 0, 2, 3))
new_state_dict[k1] = q[:, :, 0, 0]
elif 'decoder' in k and 'cross_attn' in k and 'q' in k and 'bias' in k:
k_para = k[:13] + 'layers.' + k[13:]
k_para = k_para.replace('cross_attn', 'multihead_attn')
q = params[k_para.replace('q', 'conv1')]
new_state_dict[k1] = q
elif 'decoder' in k and 'cross_attn' in k and 'kv' in k and 'weight' in k:
k_para = k[:13] + 'layers.' + k[13:]
k_para = k_para.replace('cross_attn', 'multihead_attn')
k = params[k_para.replace('kv', 'conv2')].transpose((1, 0, 2, 3))
v = params[k_para.replace('kv', 'conv3')].transpose((1, 0, 2, 3))
new_state_dict[k1] = np.concatenate([k[:, :, 0, 0], v[:, :, 0, 0]], -1)
elif 'decoder' in k and 'cross_attn' in k and 'kv' in k and 'bias' in k:
k_para = k[:13] + 'layers.' + k[13:]
k_para = k_para.replace('cross_attn', 'multihead_attn')
k = params[k_para.replace('kv', 'conv2')]
v = params[k_para.replace('kv', 'conv3')]
new_state_dict[k1] = np.concatenate([k, v], -1)
elif 'decoder' in k and 'cross_attn' in k and 'out_proj' in k:
k_para = k[:13] + 'layers.' + k[13:]
k_para = k_para.replace('cross_attn', 'multihead_attn')
new_state_dict[k1] = params[k_para]
elif 'decoder' in k and 'norm' in k:
k_para = k[:13] + 'layers.' + k[13:]
new_state_dict[k1] = params[k_para]
elif 'mlp' in k and 'weight' in k:
k_para = k[:13] + 'layers.' + k[13:]
k_para = k_para.replace('fc', 'conv')
k_para = k_para.replace('mlp.', '')
w = params[k_para].transpose((1, 0, 2, 3))
new_state_dict[k1] = w[:, :, 0, 0]
elif 'mlp' in k and 'bias' in k:
k_para = k[:13] + 'layers.' + k[13:]
k_para = k_para.replace('fc', 'conv')
k_para = k_para.replace('mlp.', '')
w = params[k_para]
new_state_dict[k1] = w
else:
new_state_dict[k1] = params[k1]
if list(new_state_dict[k1].shape) != list(v1.shape):
print(k1)
for k, v1 in state_dict.items():
if k not in new_state_dict.keys():
print(1, k)
elif list(new_state_dict[k].shape) != list(v1.shape):
print(2, k)
model.set_state_dict(new_state_dict)
paddle.save(model.state_dict(), 'nrtrnew_from_old_params.pdparams')
- The new version has a clean code structure and improved inference speed compared with the old version.
@article{Sheng2019NRTR,
title = {NRTR: A No-Recurrence Sequence-to-Sequence Model For Scene Text Recognition},
author = {Fenfen Sheng and Zhineng Chen and Bo Xu},
booktitle = {ICDAR},
year = {2019},
url = {http://arxiv.org/abs/1806.00926},
pages = {781-786}
}