Skip to content

Latest commit

 

History

History
156 lines (112 loc) · 11.5 KB

ppocr_introduction.md

File metadata and controls

156 lines (112 loc) · 11.5 KB

English | 简体中文

PP-OCR

1. 简介

PP-OCR是PaddleOCR自研的实用的超轻量OCR系统。在实现前沿算法的基础上,考虑精度与速度的平衡,进行模型瘦身深度优化,使其尽可能满足产业落地需求。

PP-OCR

PP-OCR是一个两阶段的OCR系统,其中文本检测算法选用DB,文本识别算法选用CRNN,并在检测和识别模块之间添加文本方向分类器,以应对不同方向的文本识别。

PP-OCR系统pipeline如下:

PP-OCR系统在持续迭代优化,目前已发布PP-OCR和PP-OCRv2两个版本:

PP-OCR从骨干网络选择和调整、预测头部的设计、数据增强、学习率变换策略、正则化参数选择、预训练模型使用以及模型自动裁剪量化8个方面,采用19个有效策略,对各个模块的模型进行效果调优和瘦身(如绿框所示),最终得到整体大小为3.5M的超轻量中英文OCR和2.8M的英文数字OCR。更多细节请参考PP-OCR技术报告

PP-OCRv2

PP-OCRv2在PP-OCR的基础上,进一步在5个方面重点优化,检测模型采用CML协同互学习知识蒸馏策略和CopyPaste数据增广策略;识别模型采用LCNet轻量级骨干网络、UDML 改进知识蒸馏策略和Enhanced CTC loss损失函数改进(如上图红框所示),进一步在推理速度和预测效果上取得明显提升。更多细节请参考PP-OCRv2技术报告

PP-OCRv3

PP-OCRv3在PP-OCRv2的基础上,针对检测模型和识别模型,进行了共计9个方面的升级:

  • PP-OCRv3检测模型对PP-OCRv2中的CML协同互学习文本检测蒸馏策略进行了升级,分别针对教师模型和学生模型进行进一步效果优化。其中,在对教师模型优化时,提出了大感受野的PAN结构LK-PAN和引入了DML蒸馏策略;在对学生模型优化时,提出了残差注意力机制的FPN结构RSE-FPN。
  • PP-OCRv3的识别模块是基于文本识别算法SVTR优化。SVTR不再采用RNN结构,通过引入Transformers结构更加有效地挖掘文本行图像的上下文信息,从而提升文本识别能力。PP-OCRv3通过轻量级文本识别网络SVTR_LCNet、Attention损失指导CTC损失训练策略、挖掘文字上下文信息的数据增广策略TextConAug、TextRotNet自监督预训练模型、UDML联合互学习策略、UIM无标注数据挖掘方案,6个方面进行模型加速和效果提升。

PP-OCRv3系统pipeline如下:

更多细节请参考[PP-OCRv3技术报告](https://arxiv.org/abs/2206.03001v2) 👉[中文简洁版](./PP-OCRv3_introduction.md)

PP-OCRv4在PP-OCRv3的基础上进一步升级。整体的框架图保持了与PP-OCRv3相同的pipeline,针对检测模型和识别模型进行了数据、网络结构、训练策略等多个模块的优化。 PP-OCRv4系统框图如下所示:

从算法改进思路上看,分别针对检测和识别模型,进行了共10个方面的改进:

  • 检测模块:
    • LCNetV3:精度更高的骨干网络
    • PFHead:并行head分支融合结构
    • DSR: 训练中动态增加shrink ratio
    • CML:添加Student和Teacher网络输出的KL div loss
  • 识别模块:
    • SVTR_LCNetV3:精度更高的骨干网络
    • Lite-Neck:精简的Neck结构
    • GTC-NRTR:稳定的Attention指导分支
    • Multi-Scale:多尺度训练策略
    • DF: 数据挖掘方案
    • DKD :DKD蒸馏策略

从效果上看,速度可比情况下,多种场景精度均有大幅提升:

  • 中文场景,相对于PP-OCRv3中文模型提升超4%;
  • 英文数字场景,相比于PP-OCRv3英文模型提升6%;
  • 多语言场景,优化80个语种识别效果,平均准确率提升超8%。
  • 更多细节请参考 👉中文简洁版

2. 特性

  • 超轻量PP-OCRv4系列:检测(4.7M)+ 方向分类器(1.4M)+ 识别(10M)= 16.1M
  • 超轻量PP-OCRv3系列:检测(3.6M)+ 方向分类器(1.4M)+ 识别(12M)= 17.0M
  • 超轻量PP-OCRv2系列:检测(3.1M)+ 方向分类器(1.4M)+ 识别(8.5M)= 13.0M
  • 超轻量PP-OCR mobile移动端系列:检测(3.0M)+方向分类器(1.4M)+ 识别(5.0M)= 9.4M
  • 通用PP-OCR server系列:检测(47.1M)+方向分类器(1.4M)+ 识别(94.9M)= 143.4M
  • 支持中英文数字组合识别、竖排文本识别、长文本识别
  • 支持多语言识别:韩语、日语、德语、法语等约80种语言

3. benchmark

关于PP-OCR系列模型之间的性能对比,请查看benchmark文档。

4. 效果展示 more

PP-OCRv3 中文模型
PP-OCRv3 英文模型
PP-OCRv3 多语言模型

5. 使用教程

5.1 快速体验

5.2 模型训练、压缩、推理部署

更多教程,包括模型训练、模型压缩、推理部署等,请参考文档教程

6. 模型库

PP-OCR中英文模型列表如下:

模型简介 模型名称 推荐场景 检测模型 方向分类器 识别模型
中英文超轻量 PP-OCRv4 模型(15.8M) ch_PP-OCRv4_xx 移动端&服务器端 推理模型 / 训练模型 推理模型 / 训练模型 推理模型 / 训练模型
中英文超轻量PP-OCRv3模型(16.2M) ch_PP-OCRv3_xx 移动端&服务器端 推理模型 / 训练模型 推理模型 / 训练模型 推理模型 / 训练模型
英文超轻量PP-OCRv3模型(13.4M) en_PP-OCRv3_xx 移动端&服务器端 推理模型 / 训练模型 推理模型 / 训练模型 推理模型 / 训练模型
中英文超轻量PP-OCRv2模型(13.0M) ch_PP-OCRv2_xx 移动端&服务器端 推理模型 / 训练模型 推理模型 / 训练模型 推理模型 / 训练模型
中英文超轻量PP-OCR mobile模型(9.4M) ch_ppocr_mobile_v2.0_xx 移动端&服务器端 推理模型 / 预训练模型 推理模型 / 预训练模型 推理模型 / 预训练模型
中英文通用PP-OCR server模型(143.4M) ch_ppocr_server_v2.0_xx 服务器端 推理模型 / 预训练模型 推理模型 / 预训练模型 推理模型 / 预训练模型

更多模型下载(包括英文数字模型、多语言模型、Paddle-Lite模型等),可以参考PP-OCR 系列模型下载