-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathCVT_Lloyd.py
57 lines (50 loc) · 2 KB
/
CVT_Lloyd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import numpy as np
import taichi as ti
import taichi_glsl as ts
from JFA import jfa_solver_2D
ti.init()
@ti.data_oriented
class cvt_lloyd_solver_2D:
def __init__(self, width, height, init_sites):
# (x,y) denotes the coordinates of centroid
# z is the auxiliary component to record the number of pixel in current voronoi region
self.centroids = ti.Vector(3, dt=ti.f32, shape=init_sites.shape[0])
# since jfa_solver will use from_numpy()
# it must be put after all taichi variables
self.jfa = jfa_solver_2D(width, height, init_sites)
def solve_cvt(self, m=5):
step_x = int(np.power(2, np.ceil(np.log(self.jfa.w))))
step_y = int(np.power(2, np.ceil(np.log(self.jfa.h))))
iteration = 0
while True:
self.jfa.solve_jfa((step_x, step_y))
self.compute_centroids()
if self.cvt_convergence_check() == 1:
break
self.jfa.assign_sites(self.centroids)
# Using 2 * maximum average distance as the jfa step for the first m iteration
if iteration <= m:
pass
iteration += 1
print("iteration times:", iteration)
@ti.kernel
def compute_centroids(self):
for i in range(self.jfa.num_site):
self.centroids[i].fill(0.0)
for i, j in self.jfa.pixels:
index = self.jfa.pixels[i, j]
self.centroids[index].x += i / self.jfa.w
self.centroids[index].y += j / self.jfa.h
self.centroids[index].z += 1.0
for i in range(self.jfa.num_site):
self.centroids[i].x /= self.centroids[i].z
self.centroids[i].y /= self.centroids[i].z
@ti.kernel
def cvt_convergence_check(self) -> ti.i32:
end_flag = 1
for i in range(self.jfa.num_site):
dist = ts.distance(self.jfa.sites[i], ts.vec(
self.centroids[i].x, self.centroids[i].y))
if dist > 0:
end_flag = 0
return end_flag