forked from FLyingLSJ/PyTorch-YOLOv3-master
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
180 lines (150 loc) · 7.66 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
from __future__ import division
from models import *
from utils.logger import *
from utils.utils import *
from utils.datasets import *
from utils.parse_config import *
from test import evaluate
from terminaltables import AsciiTable
import os
import sys
import time
import datetime
import argparse
import torch
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
from torch.autograd import Variable
import torch.optim as optim
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--epochs", type=int, default=100, help="number of epochs") # 训练的轮次
parser.add_argument("--batch_size", type=int, default=8, help="size of each image batch") # 每次放进模型的批次
parser.add_argument("--gradient_accumulations", type=int, default=2, help="number of gradient accums before step") # 累积多少部的梯度
parser.add_argument("--model_def", type=str, default="config/yolov3.cfg", help="path to model definition file") # yolo 配置文件路径
parser.add_argument("--data_config", type=str, default="config/coco.data", help="path to data config file") # 也是配置文件,配置类别数、训练和测试集路径、类别名称文件路径等
parser.add_argument("--pretrained_weights", type=str, help="if specified starts from checkpoint model") # 预训练模型的权重路径,最开始可以使用 yolov3_coco.weights 权重进行训练,也可以在训练过的模型基础上进行训练
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation") # 生成数据是 cpu 的线程数
parser.add_argument("--img_size", type=int, default=416, help="size of each image dimension") # 输入数据的尺寸,此值必须是 32 的整数倍
parser.add_argument("--checkpoint_interval", type=int, default=1, help="interval between saving model weights")
parser.add_argument("--evaluation_interval", type=int, default=1, help="interval evaluations on validation set")
parser.add_argument("--compute_map", default=False, help="if True computes mAP every tenth batch")
parser.add_argument("--multiscale_training", default=True, help="allow for multi-scale training") #
opt = parser.parse_args()
print(opt)
logger = Logger("logs") # 用来记录训练的日志
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 判断是不是有 GPU 可以使用
os.makedirs("output", exist_ok=True)
os.makedirs("checkpoints", exist_ok=True)
# Get data configuration
data_config = parse_data_config(opt.data_config) # parse_data_config 在 utils/parse_config.py 文件中,类型是字典
train_path = data_config["train"] # 训练集的路径
valid_path = data_config["valid"] # 验证集的路径
class_names = load_classes(data_config["names"]) # load_classes 在 utils/utils.py 文件中,类型是列表,其中每个值是一个类别,如阿猫啊狗
# Initiate model
model = Darknet(opt.model_def).to(device) # Darknet 在 model.py 文件中,这里可以有个 img_size 参数可以配置输入数据的尺寸
model.apply(weights_init_normal) # weights_init_normal 在 utils/utils.py 文件中,对权重进行初始化
# If specified we start from checkpoint
# 从预训练模型进行训练,判断是 torch 模型 pth 文件还是 Darknet 预训练权重,两种权重的加载方式不同
if opt.pretrained_weights:
if opt.pretrained_weights.endswith(".pth"):
model.load_state_dict(torch.load(opt.pretrained_weights))
else:
model.load_darknet_weights(opt.pretrained_weights)
# Get dataloader
# 数据加载器
dataset = ListDataset(train_path, augment=True, multiscale=opt.multiscale_training)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=opt.batch_size,
shuffle=True,
num_workers=opt.n_cpu,
pin_memory=True,
collate_fn=dataset.collate_fn,
)
optimizer = torch.optim.Adam(model.parameters())
metrics = [
"grid_size",
"loss",
"x",
"y",
"w",
"h",
"conf",
"cls",
"cls_acc",
"recall50",
"recall75",
"precision",
"conf_obj",
"conf_noobj",
]
for epoch in range(opt.epochs):
model.train()
start_time = time.time()
for batch_i, (_, imgs, targets) in enumerate(dataloader):
batches_done = len(dataloader) * epoch + batch_i
imgs = Variable(imgs.to(device))
targets = Variable(targets.to(device), requires_grad=False)
loss, outputs = model(imgs, targets)
loss.backward()
if batches_done % opt.gradient_accumulations:
# Accumulates gradient before each step
optimizer.step()
optimizer.zero_grad()
# ----------------
# Log progress
# ----------------
log_str = "\n---- [Epoch %d/%d, Batch %d/%d] ----\n" % (epoch, opt.epochs, batch_i, len(dataloader))
metric_table = [["Metrics", *[f"YOLO Layer {i}" for i in range(len(model.yolo_layers))]]]
# Log metrics at each YOLO layer
for i, metric in enumerate(metrics):
formats = {m: "%.6f" for m in metrics}
formats["grid_size"] = "%2d"
formats["cls_acc"] = "%.2f%%"
row_metrics = [formats[metric] % yolo.metrics.get(metric, 0) for yolo in model.yolo_layers]
metric_table += [[metric, *row_metrics]]
# Tensorboard logging
tensorboard_log = []
for j, yolo in enumerate(model.yolo_layers):
for name, metric in yolo.metrics.items():
if name != "grid_size":
tensorboard_log += [(f"{name}_{j+1}", metric)]
tensorboard_log += [("loss", loss.item())]
logger.list_of_scalars_summary(tensorboard_log, batches_done)
log_str += AsciiTable(metric_table).table
log_str += f"\nTotal loss {loss.item()}"
# Determine approximate time left for epoch
epoch_batches_left = len(dataloader) - (batch_i + 1)
time_left = datetime.timedelta(seconds=epoch_batches_left * (time.time() - start_time) / (batch_i + 1))
log_str += f"\n---- ETA {time_left}"
print(log_str)
model.seen += imgs.size(0)
if epoch % opt.evaluation_interval == 0:
print("\n---- Evaluating Model ----")
# Evaluate the model on the validation set
precision, recall, AP, f1, ap_class = evaluate(
model,
path=valid_path,
iou_thres=0.5,
conf_thres=0.5,
nms_thres=0.5,
img_size=opt.img_size,
batch_size=8,
)
evaluation_metrics = [
("val_precision", precision.mean()),
("val_recall", recall.mean()),
("val_mAP", AP.mean()),
("val_f1", f1.mean()),
]
logger.list_of_scalars_summary(evaluation_metrics, epoch)
# Print class APs and mAP
ap_table = [["Index", "Class name", "AP"]]
for i, c in enumerate(ap_class):
ap_table += [[c, class_names[c], "%.5f" % AP[i]]]
print(AsciiTable(ap_table).table)
print(f"---- mAP {AP.mean()}")
if epoch % opt.checkpoint_interval == 0:
torch.save(model.state_dict(), f"checkpoints/yolov3_ckpt_%d.pth" % epoch)