forked from yburda/iwae
-
Notifications
You must be signed in to change notification settings - Fork 0
/
experiments.py
193 lines (158 loc) · 8.54 KB
/
experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import datasets
import iwae
import optimizers
import train
import utils
import config
import os
import cPickle as pkl
import argparse
import numpy as np
def save_checkpoint(directory_name, i, model, optimizer, srng):
'''Saves model, optimizer, and random number generator state srng.state as a pickle file named training_state[i].pkl'''
try:
filename_to_save = os.path.join(directory_name, "training_state{}.pkl".format(i))
with open(filename_to_save, "wb") as f:
pkl.dump([model, optimizer, srng.rstate], f, protocol=pkl.HIGHEST_PROTOCOL)
except:
print "Failed to write to file {}".format(filename_to_save)
def load_checkpoint(directory_name, i):
'''Loads model, optimizer, and random number generator from a pickle file named training_state[i].pkl
Returns -1, None, None, None if loading failed
Returns i, model, optimizer, random number generator if loading succeedeed'''
try:
load_from_filename = os.path.join(directory_name, "training_state{}.pkl".format(i))
with open(load_from_filename, "rb") as f:
model, optimizer, rstate = pkl.load(f)
srng = utils.srng()
srng.rstate = rstate
loaded_checkpoint = i
except:
loaded_checkpoint = -1
model, optimizer, srng = None, None, None
return loaded_checkpoint, model, optimizer, srng
def post_experiment(directory_name, dataset, model):
'''Analyze the model: draw samples, measure test and training log likelihoods'''
samples = iwae.get_samples(model, 100)
q_weights = iwae.get_first_q_layer_weights(model)
p_weights = iwae.get_last_p_layer_weights(model)
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
plt.imshow(samples, cmap='Greys')
plt.savefig(os.path.join(directory_name, "samples.jpg"))
plt.close()
plt.imshow(q_weights, cmap='Greys')
plt.savefig(os.path.join(directory_name, "q_weights.jpg"))
plt.close()
plt.imshow(p_weights, cmap='Greys')
plt.savefig(os.path.join(directory_name, "p_weights.jpg"))
plt.close()
num_samples = 5000
marginal_log_likelihood = iwae.measure_marginal_log_likelihood(model=model, dataset=dataset,
subdataset="test", num_samples=num_samples)
with open(os.path.join(directory_name, "test_log_likelihood_{}_samples.txt".format(num_samples)), "w") as f:
f.write(str(marginal_log_likelihood))
print marginal_log_likelihood
marginal_log_likelihood = iwae.measure_marginal_log_likelihood(model=model, dataset=dataset,
subdataset="train", num_samples=num_samples)
with open(os.path.join(directory_name, "train_log_likelihood_{}_samples.txt".format(num_samples)), "w") as f:
f.write(str(marginal_log_likelihood))
print marginal_log_likelihood
variances = iwae.get_units_variances(model, dataset)
for i, var in enumerate(variances):
plt.hist(np.log(var), bins=20)
plt.savefig(os.path.join(directory_name, "log_variances_layer_{}.png".format(i+1)))
plt.close()
iwae.chop_units_with_variance_under_threshold(model, variances)
with open(os.path.join(directory_name, "numbers_of_active_units.txt".format(num_samples)), "w") as f:
f.write(str([layer.mean_network.last_linear_layer_weights_np().shape[1] for layer in model.q_layers]))
marginal_log_likelihood = iwae.measure_marginal_log_likelihood(model=model, dataset=dataset,
subdataset="test", num_samples=num_samples)
with open(os.path.join(directory_name, "test_log_likelihood_{}_samples_dead_units_removed.txt".format(num_samples)), "w") as f:
f.write(str(marginal_log_likelihood))
print marginal_log_likelihood
def directory_to_store(**kwargs):
'''Expects arguments that describe the experiment and returns the directory where the results of the experiment should be stored'''
if kwargs['exp'] == 'train':
directory_name = '{}l{}{}k{}'.format(kwargs['dataset'], kwargs['layers'], kwargs['model'], kwargs['k'])
else:
directory_name = kwargs['exp']
return os.path.join(config.RESULTS_DIR, directory_name)
def training_experiment(directory_name, latent_units, hidden_units_q, hidden_units_p, k, model_type, dataset, checkpoint=-1):
'''The experiment that trains a model with given parameters'''
def checkpoint0(dataset):
data_dimension = dataset.get_data_dim()
model = iwae.random_iwae(latent_units=[data_dimension] + latent_units,
hidden_units_q=hidden_units_q,
hidden_units_p=hidden_units_p,
dataset=dataset
)
srng = utils.srng()
optimizer = optimizers.Adam(model=model, learning_rate=1e-3)
return model, optimizer, srng
def checkpoint1to8(i, dataset, model, optimizer, srng):
optimizer.learning_rate = 1e-4*round(10.**(1-(i-1)/7.), 1)
model = train.train(model=model, dataset=dataset, optimizer=optimizer,
minibatch_size=20, n_epochs=3**(i-1), srng=srng,
num_samples=k, model_type=model_type)
return model, optimizer, srng
dataset = datasets.load_dataset_from_name(dataset)
loaded_checkpoint = -1
if checkpoint >= 0:
loaded_checkpoint, model, optimizer, srng = load_checkpoint(directory_name, checkpoint)
if loaded_checkpoint == -1:
print "Unable to load checkpoint {} from {}, starting the experiment from the beginning".format(checkpoint, directory_name)
if loaded_checkpoint < 0:
model, optimizer, srng = checkpoint0(dataset)
save_checkpoint(directory_name, 0, model, optimizer, srng)
loaded_checkpoint = 0
for i in range(loaded_checkpoint+1, 9):
model, optimizer, srng = checkpoint1to8(i, dataset, model, optimizer, srng)
save_checkpoint(directory_name, i, model, optimizer, srng)
loaded_checkpoint = 8
post_experiment(directory_name, dataset, model)
def experiment2(directory_name, dataset='MNIST', direction='vae_to_iwae'):
'''The experiment that trains a vae initialized at an iwae or vice versa'''
dataset = datasets.load_dataset_from_name(dataset)
if direction == 'vae_to_iwae':
previous_args = dict(layers=1, model='vae', k=1, dataset='MNIST', exp='train')
new_model_type = 'iwae'
new_k = 50
elif direction == 'iwae_to_vae':
previous_args = dict(layers=1, model='iwae', k=50, dataset='MNIST', exp='train')
new_model_type = 'vae'
new_k = 1
previous_directory_name = directory_to_store(**previous_args)
loaded_checkpoint, model, optimizer, srng = load_checkpoint(previous_directory_name, 8)
optimizer.learning_rate = 1e-4
model = train.train(model=model, dataset=dataset, optimizer=optimizer,
minibatch_size=20, n_epochs=3**7, srng=srng,
num_samples=new_k, model_type=new_model_type)
save_checkpoint(directory_name, 0, model, optimizer, srng)
post_experiment(directory_name, dataset, model)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Run VAE/IWAE training experiments.')
parser.add_argument('--exp', '-e', choices=['train', 'vae_to_iwae', 'iwae_to_vae'], default='train')
parser.add_argument('--layers', '-l', type=int, choices=[1, 2], default=1)
parser.add_argument('--model', '-m', choices=['vae', 'iwae'], default='vae')
parser.add_argument('--k', '-k', type=int, default=1)
parser.add_argument('--dataset', '-d', choices=['MNIST', 'OMNI', 'BinFixMNIST'], default='MNIST')
parser.add_argument('--checkpoint', '-c', type=int, default=-1)
args = parser.parse_args()
if args.layers == 1:
latent_units = [50]
hidden_units_q = [[200, 200]]
hidden_units_p = [[200, 200]]
elif args.layers == 2:
latent_units = [100, 50]
hidden_units_q = [[200, 200], [100, 100]]
hidden_units_p = [[100, 100], [200, 200]]
directory_name = directory_to_store(**args.__dict__)
if not os.path.exists(directory_name):
os.makedirs(directory_name)
if args.exp == 'train':
training_experiment(directory_name, latent_units=latent_units, hidden_units_q=hidden_units_q, hidden_units_p=hidden_units_p,
k=args.k, model_type=args.model, dataset=args.dataset, checkpoint=args.checkpoint)
else:
experiment2(directory_name, direction=args.exp, dataset=args.dataset)