forked from LIVIAETS/SizeLoss_WSS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
323 lines (264 loc) · 15.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
#!/usr/bin/env python3.6
import argparse
import warnings
from pathlib import Path
from functools import reduce
from operator import add, itemgetter
from shutil import copytree, rmtree
from typing import Any, Callable, Dict, List, Tuple
import torch
import numpy as np
import pandas as pd
import torch.nn.functional as F
from torch import Tensor
from torch.utils.data import DataLoader
from networks import weights_init
from dataloader import get_loaders
from utils import map_
from utils import dice_coef, dice_batch, save_images, tqdm_, haussdorf
from utils import probs2one_hot, probs2class
from utils import depth
def setup(args, n_class: int) -> Tuple[Any, Any, Any, List[List[Callable]], List[List[float]], Callable]:
print("\n>>> Setting up")
cpu: bool = args.cpu or not torch.cuda.is_available()
device = torch.device("cpu") if cpu else torch.device("cuda")
if args.weights:
if cpu:
net = torch.load(args.weights, map_location='cpu')
else:
net = torch.load(args.weights)
print(f">> Restored weights from {args.weights} successfully.")
else:
net_class = getattr(__import__('networks'), args.network)
net = net_class(args.modalities, n_class).to(device)
net.apply(weights_init)
net.to(device)
optimizer = torch.optim.Adam(net.parameters(), lr=args.l_rate, betas=(0.9, 0.99), amsgrad=False)
# print(args.losses)
list_losses = eval(args.losses)
if depth(list_losses) == 1: # For compatibility reasons, avoid changing all the previous configuration files
list_losses = [list_losses]
loss_fns: List[List[Callable]] = []
for i, losses in enumerate(list_losses):
print(f">> {i}th list of losses: {losses}")
tmp: List[Callable] = []
for loss_name, loss_params, _, _, fn, _ in losses:
loss_class = getattr(__import__('losses'), loss_name)
tmp.append(loss_class(**loss_params, fn=fn))
loss_fns.append(tmp)
loss_weights: List[List[float]] = [map_(itemgetter(5), losses) for losses in list_losses]
scheduler = getattr(__import__('scheduler'), args.scheduler)(**eval(args.scheduler_params))
return net, optimizer, device, loss_fns, loss_weights, scheduler
def do_epoch(mode: str, net: Any, device: Any, loaders: List[DataLoader], epc: int,
list_loss_fns: List[List[Callable]], list_loss_weights: List[List[float]], C: int,
savedir: str = "", optimizer: Any = None,
metric_axis: List[int] = [1], compute_haussdorf: bool = False) \
-> Tuple[Tensor, Tensor, Tensor, Tensor]:
assert mode in ["train", "val"]
if mode == "train":
net.train()
desc = f">> Training ({epc})"
elif mode == "val":
net.eval()
desc = f">> Validation ({epc})"
total_iteration: int = sum(len(loader) for loader in loaders)
total_images: int = sum(len(loader.dataset) for loader in loaders)
all_dices: Tensor = torch.zeros((total_images, C), dtype=torch.float32, device=device)
batch_dices: Tensor = torch.zeros((total_iteration, C), dtype=torch.float32, device=device)
loss_log: Tensor = torch.zeros((total_iteration), dtype=torch.float32, device=device)
haussdorf_log: Tensor = torch.zeros((total_images, C), dtype=torch.float32, device=device)
done_img: int = 0
done_batch: int = 0
tq_iter = tqdm_(total=total_iteration, desc=desc)
for i, (loader, loss_fns, loss_weights) in enumerate(zip(loaders, list_loss_fns, list_loss_weights)):
L: int = len(loss_fns)
for data in loader:
data[1:] = [e.to(device) for e in data[1:]] # Move all tensors to device
filenames, image, target = data[:3]
labels = data[3:3 + L]
bounds = data[3 + L:]
assert len(labels) == len(bounds)
B = len(image)
# Reset gradients
if optimizer:
optimizer.zero_grad()
# Forward
pred_logits: Tensor = net(image)
pred_probs: Tensor = F.softmax(pred_logits, dim=1)
predicted_mask: Tensor = probs2one_hot(pred_probs.detach()) # Used only for dice computation
assert len(bounds) == len(loss_fns) == len(loss_weights)
ziped = zip(loss_fns, labels, loss_weights, bounds)
losses = [w * loss_fn(pred_probs, label, bound) for loss_fn, label, w, bound in ziped]
loss = reduce(add, losses)
assert loss.shape == (), loss.shape
# Backward
if optimizer:
loss.backward()
optimizer.step()
# Compute and log metrics
loss_log[done_batch] = loss.detach()
sm_slice = slice(done_img, done_img + B) # Values only for current batch
dices: Tensor = dice_coef(predicted_mask, target.detach())
assert dices.shape == (B, C), (dices.shape, B, C)
all_dices[sm_slice, ...] = dices
if B > 1 and mode == "val":
batch_dice: Tensor = dice_batch(predicted_mask, target.detach())
assert batch_dice.shape == (C,), (batch_dice.shape, B, C)
batch_dices[done_batch] = batch_dice
if compute_haussdorf:
haussdorf_res: Tensor = haussdorf(predicted_mask.detach(), target.detach())
assert haussdorf_res.shape == (B, C)
haussdorf_log[sm_slice] = haussdorf_res
# Save images
if savedir:
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=UserWarning)
predicted_class: Tensor = probs2class(pred_probs)
save_images(predicted_class, filenames, savedir, mode, epc)
# Logging
big_slice = slice(0, done_img + B) # Value for current and previous batches
dsc_dict = {f"DSC{n}": all_dices[big_slice, n].mean() for n in metric_axis}
hauss_dict = {f"HD{n}": haussdorf_log[big_slice, n].mean() for n in metric_axis} if compute_haussdorf else {}
batch_dict = {f"bDSC{n}": batch_dices[:done_batch, n].mean() for n in metric_axis} if B > 1 and mode == "val" else {}
mean_dict = {"DSC": all_dices[big_slice, metric_axis].mean(),
"HD": haussdorf_log[big_slice, metric_axis].mean()} if len(metric_axis) > 1 else {}
stat_dict = {**dsc_dict, **hauss_dict, **mean_dict, **batch_dict,
"loss": loss_log[:done_batch].mean()}
nice_dict = {k: f"{v:.3f}" for (k, v) in stat_dict.items()}
done_img += B
done_batch += 1
tq_iter.set_postfix({**nice_dict, "loader": str(i)})
tq_iter.update(1)
tq_iter.close()
print(f"{desc} " + ', '.join(f"{k}={v}" for (k, v) in nice_dict.items()))
return loss_log, all_dices, batch_dices, haussdorf_log
def run(args: argparse.Namespace) -> Dict[str, Tensor]:
n_class: int = args.n_class
lr: float = args.l_rate
savedir: str = args.workdir
n_epoch: int = args.n_epoch
val_f: int = args.val_loader_id
loss_fns: List[List[Callable]]
loss_weights: List[List[float]]
net, optimizer, device, loss_fns, loss_weights, scheduler = setup(args, n_class)
train_loaders: List[DataLoader]
val_loaders: List[DataLoader]
train_loaders, val_loaders = get_loaders(args, args.dataset,
args.batch_size, n_class,
args.debug, args.in_memory)
n_tra: int = sum(len(tr_lo.dataset) for tr_lo in train_loaders) # Number of images in dataset
l_tra: int = sum(len(tr_lo) for tr_lo in train_loaders) # Number of iteration per epc: different if batch_size > 1
n_val: int = sum(len(vl_lo.dataset) for vl_lo in val_loaders)
l_val: int = sum(len(vl_lo) for vl_lo in val_loaders)
best_dice: Tensor = torch.zeros(1).to(device).type(torch.float32)
best_epoch: int = 0
metrics = {"val_dice": torch.zeros((n_epoch, n_val, n_class), device=device).type(torch.float32),
"val_batch_dice": torch.zeros((n_epoch, l_val, n_class), device=device).type(torch.float32),
"val_loss": torch.zeros((n_epoch, l_val), device=device).type(torch.float32),
"tra_dice": torch.zeros((n_epoch, n_tra, n_class), device=device).type(torch.float32),
"tra_batch_dice": torch.zeros((n_epoch, l_tra, n_class), device=device).type(torch.float32),
"tra_loss": torch.zeros((n_epoch, l_tra), device=device).type(torch.float32)}
if args.compute_haussdorf:
metrics["val_haussdorf"] = torch.zeros((n_epoch, n_val, n_class), device=device).type(torch.float32)
print("\n>>> Starting the training")
for i in range(n_epoch):
# Do training and validation loops
tra_loss, tra_dice, tra_batch_dice, _ = do_epoch("train", net, device, train_loaders, i,
loss_fns, loss_weights, n_class,
optimizer=optimizer,
metric_axis=args.metric_axis)
with torch.no_grad():
val_loss, val_dice, val_batch_dice, val_haussdorf = do_epoch("val", net, device, val_loaders, i,
[loss_fns[val_f]], [loss_weights[val_f]],
n_class,
savedir=savedir,
metric_axis=args.metric_axis,
compute_haussdorf=args.compute_haussdorf)
# Sort and save the metrics
for k in metrics:
assert metrics[k][i].shape == eval(k).shape, (metrics[k][i].shape, eval(k).shape)
metrics[k][i] = eval(k)
for k, e in metrics.items():
np.save(Path(savedir, f"{k}.npy"), e.cpu().numpy())
df = pd.DataFrame({"tra_loss": metrics["tra_loss"].mean(dim=1).cpu().numpy(),
"val_loss": metrics["val_loss"].mean(dim=1).cpu().numpy(),
"tra_dice": metrics["tra_dice"][:, :, -1].mean(dim=1).cpu().numpy(),
"val_dice": metrics["val_dice"][:, :, -1].mean(dim=1).cpu().numpy(),
"tra_batch_dice": metrics["tra_batch_dice"][:, :, -1].mean(dim=1).cpu().numpy(),
"val_batch_dice": metrics["val_batch_dice"][:, :, -1].mean(dim=1).cpu().numpy()})
df.to_csv(Path(savedir, args.csv), float_format="%.4f", index_label="epoch")
# Save model if better
current_dice: Tensor = val_dice[:, args.metric_axis].mean()
if current_dice > best_dice:
best_epoch = i
best_dice = current_dice
if args.compute_haussdorf:
best_haussdorf = val_haussdorf[:, args.metric_axis].mean()
with open(Path(savedir, "best_epoch.txt"), 'w') as f:
f.write(str(i))
best_folder = Path(savedir, "best_epoch")
if best_folder.exists():
rmtree(best_folder)
copytree(Path(savedir, f"iter{i:03d}"), Path(best_folder))
torch.save(net, Path(savedir, "best.pkl"))
optimizer, loss_fns, loss_weights = scheduler(i, optimizer, loss_fns, loss_weights)
# if args.schedule and (i > (best_epoch + 20)):
if args.schedule and (i % (best_epoch + 20) == 0): # Yeah, ugly but will clean that later
for param_group in optimizer.param_groups:
lr *= 0.5
param_group['lr'] = lr
print(f'>> New learning Rate: {lr}')
if i > 0 and not (i % 5):
maybe_hauss = f', Haussdorf: {best_haussdorf:.3f}' if args.compute_haussdorf else ''
print(f">> Best results at epoch {best_epoch}: DSC: {best_dice:.3f}{maybe_hauss}")
# Because displaying the results at the end is actually convenient
maybe_hauss = f', Haussdorf: {best_haussdorf:.3f}' if args.compute_haussdorf else ''
print(f">> Best results at epoch {best_epoch}: DSC: {best_dice:.3f}{maybe_hauss}")
for metric in metrics:
if "val" in metric or "loss" in metric: # Do not care about training values, nor the loss (keep it simple)
print(f"\t{metric}: {metrics[metric][best_epoch].mean(dim=0)}")
return metrics
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description='Hyperparams')
parser.add_argument('--dataset', type=str, required=True)
# parser.add_argument('--weak_subfolder', type=str, required=True)
parser.add_argument("--csv", type=str, required=True)
parser.add_argument("--workdir", type=str, required=True)
parser.add_argument("--losses", type=str, required=True,
help="List of list of (loss_name, loss_params, bounds_name, bounds_params, fn, weight)")
parser.add_argument("--folders", type=str, required=True,
help="List of list of (subfolder, transform, is_hot)")
parser.add_argument("--network", type=str, required=True, help="The network to use")
parser.add_argument("--grp_regex", type=str, required=True)
parser.add_argument("--n_class", type=int, required=True)
parser.add_argument("--metric_axis", type=int, nargs='+', required=True, help="Classes to display metrics")
parser.add_argument("--debug", action="store_true")
parser.add_argument("--cpu", action='store_true')
parser.add_argument("--in_memory", action='store_true')
parser.add_argument("--schedule", action='store_true')
parser.add_argument("--compute_haussdorf", action='store_true')
parser.add_argument("--group", action='store_true', help="Group the patient slices together for validation. \
Useful to compute the 3d dice, but might destroy the memory for datasets with a lot of slices per patient.")
parser.add_argument("--group_train", action='store_true', help="Group the patient slices together for training. \
Useful to compute the 3d dice, but might destroy the memory for datasets with a lot of slices per patient.")
parser.add_argument('--n_epoch', nargs='?', type=int, default=200,
help='# of the epochs')
parser.add_argument('--l_rate', nargs='?', type=float, default=5e-4,
help='Learning Rate')
parser.add_argument("--scheduler", type=str, default="DummyScheduler")
parser.add_argument("--scheduler_params", type=str, default="{}")
parser.add_argument("--modalities", type=int, default=1)
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument("--weights", type=str, default='', help="Stored weights to restore")
parser.add_argument("--training_folders", type=str, nargs="+", default=["train"])
parser.add_argument("--val_loader_id", type=int, default=-1, help="""
Kinda housefiry at the moment. When we have several train loader (for hybrid training
for instance), wants only one validation loader. The way the dataloading creation is
written at the moment, it will create several validation loader on the same topfolder (val),
but with different folders/bounds ; which will basically duplicate the evaluation.
""")
args = parser.parse_args()
print("\n", args)
return args
if __name__ == '__main__':
run(get_args())