forked from pieceofr/mango-simulation-dos
-
Notifications
You must be signed in to change notification settings - Fork 7
/
influx_data.sh
executable file
·359 lines (348 loc) · 20.9 KB
/
influx_data.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
#!/usr/bin/env bash
source utils.sh
_start_slot='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${start_time2}')
|> filter(fn: (r) => r._measurement == "optimistic_slot")
|> group(columns: ["slot"])|> median()
|>drop(columns: ["_measurement", "_field", "_start", "_stop","_time","host_id", "slot"])'
_end_slot='from(bucket: "tds")|> range(start:'${stop_time2}' ,stop:'${stop_time}')
|> filter(fn: (r) => r._measurement == "optimistic_slot")
|> group(columns: ["slot"])|> median()
|> drop(columns: ["_measurement", "_field", "_start", "_stop","_time","host_id", "slot"])'
# TPS: Notetice that tthe result of TPS need to divide window_interval to get the correct result
_mean_tx_count='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r._measurement == "replay-slot-stats" and r._field == "total_transactions")
|> aggregateWindow(every:'${window_interval}', fn: sum)
|> group() |> median()|>toInt()'
_max_tx_count='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r._measurement == "replay-slot-stats" and r._field == "total_transactions")
|> aggregateWindow(every:'${window_interval}', fn: sum)
|> group() |> max()
|>drop(columns: ["_measurement", "_start", "_stop","host_id","_field"])'
_min_tx_count='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r._measurement == "replay-slot-stats" and r._field == "total_transactions")
|> aggregateWindow(every:'${window_interval}', fn: sum)
|> group() |> min()'
_90_tx_count='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r._measurement == "replay-slot-stats" and r._field == "total_transactions")
|> aggregateWindow(every: '${window_interval_long}', fn: sum)
|> group()|> quantile(column: "_value", q:0.9)'
_99_tx_count='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r._measurement == "replay-slot-stats" and r._field == "total_transactions")
|> aggregateWindow(every: '${window_interval_long}', fn: sum)
|> group()|> quantile(column: "_value", q:0.99)'
# tower distance
_mean_tower_vote_distance='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r._measurement == "tower-vote")
|> aggregateWindow(every: '${window_interval}',fn: last)
|> pivot(rowKey:["host_id"], columnKey: ["_field"], valueColumn: "_value")
|> map(fn: (r) => ({ r with _value: r.latest - r.root}))
|> group()|> mean()|>toInt()'
_max_tower_vote_distance='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r._measurement == "tower-vote")
|> aggregateWindow(every: '${window_interval}',fn: last)
|> pivot(rowKey:["host_id"], columnKey: ["_field"], valueColumn: "_value")
|> map(fn: (r) => ({ r with _value: r.latest - r.root}))
|> group()|> max()|>toInt()
|>drop(columns: ["_measurement", "_start", "_stop","count","host_id","latest","root"])'
_min_tower_vote_distance='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r._measurement == "tower-vote")
|> aggregateWindow(every: '${window_interval}',fn: last)
|> pivot(rowKey:["host_id"], columnKey: ["_field"], valueColumn: "_value")
|> map(fn: (r) => ({ r with _value: r.latest - r.root}))
|> group()|> min()|>toInt()
|>drop(columns: ["_measurement", "_start", "_stop","count","host_id","latest","root"])'
_90_tower_vote_distance='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r._measurement == "tower-vote")
|> aggregateWindow(every: '${window_interval}',fn: last)
|> pivot(rowKey:["host_id"], columnKey: ["_field"], valueColumn: "_value")
|> map(fn: (r) => ({ r with _value: r.latest - r.root}))
|> group()|> quantile(column: "_value", q:0.9)|>toInt()'
_99_tower_vote_distance='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r._measurement == "tower-vote")
|> aggregateWindow(every: '${window_interval}',fn: last)
|> pivot(rowKey:["host_id"], columnKey: ["_field"], valueColumn: "_value")
|> map(fn: (r) => ({ r with _value: r.latest - r.root}))
|> group()|> quantile(column: "_value", q:0.99)|>toInt()'
#optimistic_slot_elapsed
_mean_optimistic_slot_elapsed='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r._measurement == "optimistic_slot_elapsed")
|> aggregateWindow(every: '${window_interval}', fn: mean)
|> group()|> mean()|>toInt()
|> drop(columns: ["_start", "_stop"])'
_max_optimistic_slot_elapsed='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r._measurement == "optimistic_slot_elapsed")
|> aggregateWindow(every: '${window_interval}', fn: max)
|> group()|> max()|>toInt()
|> drop(columns: ["_measurement","_field", "_start", "_stop","host_id","_time"])'
_min_optimistic_slot_elapsed='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r._measurement == "optimistic_slot_elapsed")
|> aggregateWindow(every: '${window_interval}', fn: min)
|> group()|>min()|>toInt()
|> drop(columns: ["_measurement","_field", "_start", "_stop","host_id","latest","_time"])'
_90_optimistic_slot_elapsed='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r._measurement == "optimistic_slot_elapsed")
|> aggregateWindow(every: '${window_interval_long}', fn: mean)
|> group()|>quantile(column: "_value", q:0.9)|>toInt()
|> drop(columns: ["_start", "_stop"])'
_99_optimistic_slot_elapsed='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r._measurement == "optimistic_slot_elapsed")
|> aggregateWindow(every: '${window_interval_long}', fn: mean)
|> group()|>quantile(column: "_value", q:0.99)|>toInt()
|> drop(columns: ["_start", "_stop"])'
# ct_stats_block_cost
_mean_ct_stats_block_cost='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r._measurement == "cost_tracker_stats" and r["_field"] == "block_cost")
|> aggregateWindow(every: '${window_interval}', fn: mean)
|> group()|> mean()|>toInt()
|> drop(columns:["_start", "_stop"])'
_max_ct_stats_block_cost='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r._measurement == "cost_tracker_stats" and r["_field"] == "block_cost")
|> aggregateWindow(every: '${window_interval}', fn: max)
|> group()|> max()|>toInt()
|> drop(columns: ["_measurement","_field", "_start", "_stop","host_id","_time"])'
_min_ct_stats_block_cost='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r._measurement == "cost_tracker_stats" and r["_field"] == "block_cost")
|> aggregateWindow(every: '${window_interval}', fn: min)
|> group()|> min()|>toInt()
|> drop(columns: ["_measurement","_field", "_start", "_stop","host_id","_time"])'
_90_ct_stats_block_cost='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r._measurement == "cost_tracker_stats" and r["_field"] == "block_cost")
|> aggregateWindow(every: '${window_interval}', fn: (column, tables=<-) => tables |> quantile(q: 0.9))
|> group()|>quantile(column: "_value", q:0.90)
|> group()|> min()|>toInt()
|> drop(columns: ["_start", "_stop"])'
_99_ct_stats_block_cost='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r._measurement == "cost_tracker_stats" and r["_field"] == "block_cost")
|> aggregateWindow(every: '${window_interval}', fn: (column, tables=<-) => tables |> quantile(q: 0.99))
|> group()|>quantile(column: "_value", q:0.99)
|> group()|> min()|>toInt()
|> drop(columns: ["_start", "_stop"])'
# ct_stats_transaction_count
_mean_ct_stats_transaction_count='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r["_measurement"] == "cost_tracker_stats" and r["_field"] == "transaction_count")
|> aggregateWindow(every: '${window_interval}', fn: mean)
|> group()|> mean()|>toInt()
|> drop(columns: ["_start", "_stop"])'
_max_ct_stats_transaction_count='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r["_measurement"] == "cost_tracker_stats" and r["_field"] == "transaction_count")
|> aggregateWindow(every: '${window_interval}', fn: max)
|> group()|> max()|>toInt()
|> drop(columns: ["_measurement","_field", "_start", "_stop","host_id","latest","_time"])'
_min_ct_stats_transaction_count='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r["_measurement"] == "cost_tracker_stats" and r["_field"] == "transaction_count")
|> aggregateWindow(every: '${window_interval}', fn: min)
|> group()|> min()|>toInt()
|> drop(columns: ["_measurement","_field", "_start", "_stop","host_id","latest","_time"])'
_90_ct_stats_transaction_count='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r["_measurement"] == "cost_tracker_stats" and r["_field"] == "transaction_count")
|> aggregateWindow(every: '${window_interval}', fn: (column, tables=<-) => tables |> quantile(q: 0.9))
|> group()|>quantile(column: "_value", q:0.90)|>toInt()
|> drop(columns: ["_start", "_stop"])'
_99_ct_stats_transaction_count='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r["_measurement"] == "cost_tracker_stats" and r["_field"] == "transaction_count")
|> aggregateWindow(every: '${window_interval}', fn: (column, tables=<-) => tables |> quantile(q: 0.99))
|> filter(fn: (r) => r["_field"] == "transaction_count")
|> group()|>quantile(column: "_value", q:0.99)|>toInt()
|> drop(columns: ["_start", "_stop"])'
# ct_stats_number_of_accounts
_mean_ct_stats_number_of_accounts='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r._measurement == "cost_tracker_stats" and r["_field"] == "number_of_accounts")
|> aggregateWindow(every: '${window_interval}', fn: mean)
|> group()|> mean()|>toInt()
|> drop(columns: ["_start", "_stop"])'
_max_ct_stats_number_of_accounts='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r._measurement == "cost_tracker_stats" and r["_field"] == "number_of_accounts")
|> aggregateWindow(every: '${window_interval}', fn: max)
|> group()|> max()|>toInt()
|> drop(columns: ["_measurement","_field", "_start", "_stop","host_id","_time"])'
_min_ct_stats_number_of_accounts='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r._measurement == "cost_tracker_stats" and r["_field"] == "number_of_accounts")
|> aggregateWindow(every: '${window_interval}', fn: min)
|> group()|> min()|>toInt()
|> drop(columns: ["_measurement","_field", "_start", "_stop","host_id","_time"])'
_90_ct_stats_number_of_accounts='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r._measurement == "cost_tracker_stats" and r["_field"] == "number_of_accounts")
|> aggregateWindow(every: '${window_interval}', fn: (column, tables=<-) => tables |> quantile(q: 0.90))
|> group()|>quantile(column: "_value", q:0.90)|>toInt()
|> drop(columns: ["_start", "_stop"])'
_99_ct_stats_number_of_accounts='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r._measurement == "cost_tracker_stats" and r["_field"] == "number_of_accounts")
|> aggregateWindow(every: '${window_interval}', fn: (column, tables=<-) => tables |> quantile(q: 0.90))
|> group()|>quantile(column: "_value", q:0.99)|>toInt()
|> drop(columns: ["_start", "_stop"])'
#blocks fill
_total_blocks='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r._measurement == "cost_tracker_stats" and r["_field"] == "bank_slot")
|> group()
|> aggregateWindow(every: '${window_interval}', fn: count)
|> sum()
|> drop(columns: ["_start", "_stop"])'
_blocks_fill_50='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r._measurement == "cost_tracker_stats")
|> filter(fn: (r) => r._field == "bank_slot" or r._field == "block_cost")
|> pivot(rowKey:["_time", "host_id"], columnKey: ["_field"], valueColumn: "_value")
|> group()
|> filter(fn: (r) => r.block_cost > (48000000.0*0.5))
|> aggregateWindow(every: '${window_interval}', fn: (column, tables=<-) => tables |> count(column: "bank_slot"))
|> sum(column: "bank_slot")
|> drop(columns: ["_start", "_stop"])'
_blocks_fill_90='from(bucket: "tds")|> range(start:'${start_time}' ,stop:'${stop_time}')
|> filter(fn: (r) => r._measurement == "cost_tracker_stats")
|> filter(fn: (r) => r._field == "bank_slot" or r._field == "block_cost")
|> pivot(rowKey:["_time", "host_id"], columnKey: ["_field"], valueColumn: "_value")
|> group()
|> filter(fn: (r) => r.block_cost > (48000000.0*0.9))
|> aggregateWindow(every: '${window_interval}', fn: (column, tables=<-) => tables |> count(column: "bank_slot"))
|> sum(column: "bank_slot")
|> drop(columns: ["_start", "_stop"])'
#skip_rate
#skip_rate
# $1:start_time
# $2: stop_time
# $3: oversize_window
# $4: type of statistic (mean/max/percentile90)
function skip_rate_query() {
skip_rate_q_prefix='data_max=from(bucket: "tds")|> range(start:'$1' ,stop:'$2')
|> filter(fn: (r) => r["_measurement"] == "bank-new_from_parent-heights")
|> filter(fn: (r) => r["_field"] == "slot" or r["_field"] == "block_height")
|> aggregateWindow(every:'$3', fn:max)
|> max()
|> group(columns: ["host_id"], mode:"by")
data_min=from(bucket: "tds")
|> range(start:'$1' ,stop:'$2')
|> filter(fn: (r) => r["_measurement"] == "bank-new_from_parent-heights")
|> filter(fn: (r) => r["_field"] == "slot" or r["_field"] == "block_height")
|> aggregateWindow(every: '$3', fn:min)
|> max()
|> group(columns: ["host_id"], mode:"by")
block_max=data_max|> filter(fn: (r) => r["_field"] == "block_height")|> set(key: "_field", value: "block_max")
block_min=data_min|> filter(fn: (r) => r["_field"] == "block_height")|> set(key: "_field", value: "block_min")
slot_max=data_max|> filter(fn: (r) => r["_field"] == "slot")|> set(key: "_field", value: "slot_max")
slot_min=data_min|> filter(fn: (r) => r["_field"] == "slot")|> set(key: "_field", value: "slot_min")
union(tables: [block_max, block_min, slot_max, slot_min])
|> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
|> map(fn: (r) => ({ r with block_diff: r.block_max - r.block_min }))
|> map(fn: (r) => ({ r with slot_diff: r.slot_max - r.slot_min }))
|> map(fn: (r) => ({ r with skip_slot: r.slot_diff - r.block_diff }))
|> filter(fn: (r) => r.slot_diff > 0)
|> map(fn: (r) => ({ r with skip_rate_percent: r.skip_slot*100/r.slot_diff }))
|> keep(columns: ["skip_rate_percent"])|> group()'
case "$4" in
'mean')
skip_rate_query=$skip_rate_q_prefix'|> mean(column: "skip_rate_percent")|> rename(columns: {skip_rate_percent: "_value"})'
;;
'max')
skip_rate_query=$skip_rate_q_prefix'|> max(column: "skip_rate_percent")|> rename(columns: {skip_rate_percent: "_value"})'
;;
'percentile90')
skip_rate_query=$skip_rate_q_prefix'|> quantile(q: 0.9, column: "skip_rate_percent")|> rename(columns: {skip_rate_percent: "_value"})'
;;
esac
}
skip_rate_query "$start_time" "$stop_time" "$oversize_window" "mean"
_mean_skip_rate=$skip_rate_query
skip_rate_query "$start_time" "$stop_time" "$oversize_window" "max"
_max_skip_rate=$skip_rate_query
skip_rate_query "$start_time" "$stop_time" "$oversize_window" "percentile90"
_skip_rate_90=$skip_rate_query
start_time_b4_test=$(get_time_before "$start_time" 3600)
b4_stop_time_b4_test="$start_time"
skip_rate_query "$start_time_b4_test" "$b4_stop_time_b4_test" "$oversize_window" "mean"
_mean_skip_rate_b4_test=$skip_rate_query
declare -A FLUX # FLUX command
FLUX[start_slot]=$_start_slot
FLUX[end_slot]=$_end_slot
# TPS
FLUX[mean_tx_count]=$_mean_tx_count
FLUX[max_tx_count]=$_max_tx_count
#FLUX[min_tx_count]=$_min_tx_count
FLUX[p90_tx_count]=$_90_tx_count
FLUX[p99_tx_count]=$_99_tx_count
# # tower distance
FLUX[mean_tower_vote_distance]=$_mean_tower_vote_distance
FLUX[max_tower_vote_distance]=$_max_tower_vote_distance
#FLUX[min_tower_vote_distance]=$_min_tower_vote_distance
FLUX[p90_tower_vote_distance]=$_90_tower_vote_distance
FLUX[p99_tower_vote_distance]=$_99_tower_vote_distance
# # optimistic_slot_elapsed
FLUX[mean_optimistic_slot_elapsed]=$_mean_optimistic_slot_elapsed
FLUX[max_optimistic_slot_elapsed]=$_max_optimistic_slot_elapsed
# FLUX[min_optimistic_slot_elapsed]=$_min_optimistic_slot_elapsed
FLUX[p90_optimistic_slot_elapsed]=$_90_optimistic_slot_elapsed
FLUX[p99_optimistic_slot_elapsed]=$_99_optimistic_slot_elapsed
# # ct_stats_block_cost
FLUX[mean_ct_stats_block_cost]=$_mean_ct_stats_block_cost
FLUX[max_ct_stats_block_cost]=$_max_ct_stats_block_cost
# FLUX[min_ct_stats_block_cost]=$_min_ct_stats_block_cost
FLUX[p90_ct_stats_block_cost]=$_90_ct_stats_block_cost
FLUX[p99_ct_stats_block_cost]=$_99_ct_stats_block_cost
# ct_stats_transaction_count
FLUX[mean_ct_stats_transaction_count]=$_mean_ct_stats_transaction_count
FLUX[max_ct_stats_transaction_count]=$_max_ct_stats_transaction_count
# FLUX[min_ct_stats_transaction_count]=$_min_ct_stats_transaction_count
FLUX[p90_ct_stats_transaction_count]=$_90_ct_stats_transaction_count
FLUX[p99_ct_stats_transaction_count]=$_99_ct_stats_transaction_count
# ct_stats_number_of_accounts
FLUX[mean_ct_stats_number_of_accounts]=$_mean_ct_stats_number_of_accounts
FLUX[max_ct_stats_number_of_accounts]=$_max_ct_stats_number_of_accounts
# FLUX[min_ct_stats_number_of_accounts]=$_min_ct_stats_number_of_accounts
FLUX[p90_ct_stats_number_of_accounts]=$_90_ct_stats_number_of_accounts
FLUX[p99_ct_stats_number_of_accounts]=$_99_ct_stats_number_of_accounts
# blocks fill
FLUX[total_blocks]=$_total_blocks
FLUX[blocks_fill_50]=$_blocks_fill_50
FLUX[blocks_fill_90]=$_blocks_fill_90
# skip rate
FLUX[mean_skip_rate]=$_mean_skip_rate
FLUX[max_skip_rate]=$_max_skip_rate
FLUX[skip_rate_90]=$_skip_rate_90
FLUX[mean_skip_rate_b4_test]=$_mean_skip_rate_b4_test
# Dos Report write to Influxdb
declare -A FIELD_MEASUREMENT
# measurement range
FIELD_MEASUREMENT[start_time]=range
FIELD_MEASUREMENT[stop_time]=range
FIELD_MEASUREMENT[time_range]=range
FIELD_MEASUREMENT[start_slot]=range
FIELD_MEASUREMENT[end_slot]=range
# tps
FIELD_MEASUREMENT[mean_tps]=tps
FIELD_MEASUREMENT[max_tps]=tps
FIELD_MEASUREMENT[90th_tx_count]=tps
FIELD_MEASUREMENT[99th_tx_count]=tps
# tower_vote
FIELD_MEASUREMENT[mean_tower_vote_distance]=tower_vote
FIELD_MEASUREMENT[max_tower_vote_distance]=tower_vote
FIELD_MEASUREMENT[90th_tower_vote_distance]=tower_vote
FIELD_MEASUREMENT[99th_tower_vote_distance]=tower_vote
# optimistic_slot_elapsed
FIELD_MEASUREMENT[mean_optimistic_slot_elapsed]=optimistic_slot_elapsed
FIELD_MEASUREMENT[max_optimistic_slot_elapsed]=optimistic_slot_elapsed
FIELD_MEASUREMENT[90th_optimistic_slot_elapsed]=optimistic_slot_elapsed
FIELD_MEASUREMENT[99th_optimistic_slot_elapsed]=optimistic_slot_elapsed
# cost_tracker_stats
FIELD_MEASUREMENT[mean_cost_tracker_stats_block_cost]=block_cost
FIELD_MEASUREMENT[max_cost_tracker_stats_block_cost]=block_cost
FIELD_MEASUREMENT[90th_cost_tracker_stats_block_cost]=block_cost
FIELD_MEASUREMENT[99th_cost_tracker_stats_block_cost]=block_cost
# transaction_count
FIELD_MEASUREMENT[mean_cost_tracker_stats_transaction_count]=transaction_count
FIELD_MEASUREMENT[max_cost_tracker_stats_transaction_count]=transaction_count
FIELD_MEASUREMENT[90th_cost_tracker_stats_transaction_count]=transaction_count
FIELD_MEASUREMENT[99th_cost_tracker_stats_transaction_count]=transaction_count
# ct_stats_number_of_accounts
FIELD_MEASUREMENT[mean_cost_tracker_stats_number_of_accounts]=number_of_accounts
FIELD_MEASUREMENT[max_cost_tracker_stats_number_of_accounts]=number_of_accounts
FIELD_MEASUREMENT[90th_cost_tracker_stats_number_of_accounts]=number_of_accounts
FIELD_MEASUREMENT[99th_cost_tracker_stats_number_of_accounts]=number_of_accounts
# blocks fill
FIELD_MEASUREMENT[numb_total_blocks]=block_fill
FIELD_MEASUREMENT[numb_blocks_50_full]=block_fill
FIELD_MEASUREMENT[numb_blocks_90_full]=block_fill
FIELD_MEASUREMENT[blocks_50_full]=block_fill
FIELD_MEASUREMENT[blocks_90_full]=block_fill
# skip rate
FIELD_MEASUREMENT[mean_skip_rate]=skip_rate
FIELD_MEASUREMENT[max_skip_rate]=skip_rate
FIELD_MEASUREMENT[skip_rate_90]=skip_rate
FIELD_MEASUREMENT[mean_skip_rate_b4_test]=skip_rate