-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcross_platform_testing.py
477 lines (398 loc) · 19.2 KB
/
cross_platform_testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
"""Run a cross platform testing with some configurations.
It should be run via script with the following command:
OPTION A:
To generate new programs and execute them:
cross_platform_testing.py generate --config_file=config.yaml
OPTION B:
To run a detector/statistical test on the produced bitstrings:
cross_platform_testing.py detect --config_file=config.yaml
Note: insert the tag --benchmark to run only the benchmark configurations
as specified by the is_benchmark flag in the congig.yaml file.
"""
import click
import os
from utils import iterate_parallel, load_config_and_check
from utils import iterate_parallel_n
from utils import iterate_over
from pathlib import Path
import shutil
import random
from typing import Any, Dict
from generation_strategy import *
import subprocess
import sys
import json
from itertools import combinations
from detectors import *
from generation_strategy import *
from simulators import *
from simulators_mockup import *
from utils import convert
from utils import run_programs
from utils import iterate_over_program_ids
from utils import iterate_over_pairs_of_group
import time
def replace_in_all_files(folder, detect_string, substitute_string):
"""Replace the given string in all the files in the folder."""
for circuit_id, content in iterate_over(folder, filetype=".py", parse_json=False):
content = content.replace(detect_string, substitute_string)
with open(os.path.join(folder, circuit_id + ".py"), "w") as f:
f.write(content)
f.close()
def get_folder(config, comparison_name, stage, compiler_name=None):
if compiler_name is None:
return os.path.join(
config["experiment_folder"], comparison_name, stage)
return os.path.join(
config["experiment_folder"], comparison_name, stage, compiler_name)
def prepare_folders(config: Dict[str, Any], benchmark_mode: bool) -> None:
"""Prepare the folders."""
click.echo("Checking folder structure...")
comparisons = config["comparisons"]
experiment_folder = config["experiment_folder"]
Path(experiment_folder).mkdir(parents=True, exist_ok=True)
for comparison in comparisons:
if benchmark_mode and not comparison.get("is_benchmark", False):
print("Skipping folder creation: ", comparison["name"])
print("[Not part of the benchmark.]")
continue
comparison_name = comparison["name"]
compilers = comparison["compilers"]
subfolder = os.path.join(experiment_folder, comparison_name)
Path(subfolder).mkdir(parents=True, exist_ok=True)
for stage_folder in ["programs", "executions", "ground_truth", "predictions"]:
Path(os.path.join(subfolder, stage_folder)).mkdir(
parents=True, exist_ok=True)
if stage_folder in ["programs", "executions"]:
for compiler in compilers:
Path(os.path.join(subfolder, stage_folder, compiler["name"])).mkdir(
parents=True, exist_ok=True)
Path(os.path.join(subfolder, "original_programs")).mkdir(
parents=True, exist_ok=True)
click.echo("Folder structure checked and ready.")
def get_compiler(role: str, comparison_config: Dict[str, Any]):
"""Reconstruct and return the compiler for master or slave."""
lookup_compiler = [
c for c in comparison_config["compilers"]
if c["benchmark_role"] == role][0]
return lookup_compiler
def get_generator_name(role: str, comparison_config: Dict[str, Any]):
"""Reconstruct and return the generator name for master or slave."""
lookup_compiler = get_compiler(role, comparison_config)
return lookup_compiler['name']
def get_generator_folder(role: str, comparison_config: Dict[str, Any], config: Dict[str, Any]):
"""Reconstruct and return the generator folder for master or slave."""
lookup_compiler = get_compiler(role, comparison_config)
return get_folder(
config, comparison_config["name"], "programs", lookup_compiler["name"])
def get_generator(role: str, comparison_config: Dict[str, Any], config: Dict[str, Any]):
"""Reconstruct and return the generator for master or slave."""
lookup_compiler = get_compiler(role, comparison_config)
if 'generation_object' in lookup_compiler.keys():
generator_name = lookup_compiler['generation_object']
else:
generator_name = comparison_config['generation_object']
return eval(generator_name)(
out_folder=get_generator_folder(role, comparison_config, config),
benchmark_name=comparison_config["name"]
)
def generate_together(
comparison_config: Dict[str, Any], config: Dict[str, Any]):
"""Jointly generate the samples "master" and "slave" in a sequential way.
Note that we need this generation to propagate the number of qubits that
are generated by the two possibly different generators, since we want
circuit with at least the same output, which makes them comparable.
"""
click.echo("Joint generation...")
n_generated_programs = config["n_generated_programs"]
random.seed(config["random_seed"])
stop_generation = False
for i in range(n_generated_programs):
# sample a number of qubits
n_qubits = random.randint(config["min_n_qubits"], config["max_n_qubits"])
# create the program and store them automatically
for role in ["master", "slave"]:
generator = get_generator(role=role,
comparison_config=comparison_config, config=config)
experiment_level_seed = config["random_seed"]
lookup_compiler = get_compiler(role, comparison_config)
seed = lookup_compiler.get("random_seed", experiment_level_seed)
try:
generator.generate(
n_qubits=n_qubits,
n_ops_range=(config["min_n_ops"], config["max_n_ops"]),
gate_set=config["gate_set"],
random_seed=seed,
circuit_id=str(i))
except NoMoreProgramsAvailable:
stop_generation = True
if stop_generation:
break
def generate_once_and_copy(
comparison_config: Dict[str, Any], config: Dict[str, Any]):
"""Generate the samples "master" and copy the same in sample "slave"."""
click.echo("Generate Once&Copy generation...")
n_generated_programs = config["n_generated_programs"]
source_folder = get_generator_folder(
role="master", comparison_config=comparison_config, config=config)
generator = eval(comparison_config['generation_object'])(
out_folder=source_folder,
benchmark_name=comparison_config["name"]
)
random.seed(config["random_seed"])
for i in range(n_generated_programs):
# sample a number of qubits
n_qubits = random.randint(config["min_n_qubits"], config["max_n_qubits"])
# create the program and store them automatically
try:
generator.generate(
n_qubits=n_qubits,
n_ops_range=(config["min_n_ops"], config["max_n_ops"]),
gate_set=config["gate_set"],
random_seed=config["random_seed"],
circuit_id=str(i))
except NoMoreProgramsAvailable:
break
dest_folder = get_generator_folder(
role="slave", comparison_config=comparison_config, config=config)
# copy the files
for file in os.listdir(source_folder):
shutil.copy(os.path.join(source_folder, file), dest_folder)
def generate_once_and_derive(
comparison_config: Dict[str, Any], config: Dict[str, Any]):
"""Generate the samples for "master" and derive in "slave" samples"""
click.echo("Generate Once&Derive generation...")
n_generated_programs = config["n_generated_programs"]
# load the generator objects for the two samples
generator_master = get_generator(
role="master", comparison_config=comparison_config, config=config)
generator_slave = get_generator(
role="slave", comparison_config=comparison_config, config=config)
random.seed(config["random_seed"])
stop_generation = False
for i in range(n_generated_programs):
# sample a number of qubits
n_qubits = random.randint(config["min_n_qubits"], config["max_n_qubits"])
# create the program and store them automatically
try:
qasm_content, metadata = generator_master.generate(
n_qubits=n_qubits,
n_ops_range=(config["min_n_ops"], config["max_n_ops"]),
gate_set=config["gate_set"],
random_seed=config["random_seed"],
circuit_id=str(i))
except NoMoreProgramsAvailable:
stop_generation = True
# derive the B sample
generator_slave.load_existing_program(qasm_content, metadata)
try:
qasm_content, metadata = generator_slave.generate(
n_qubits=n_qubits,
n_ops_range=(config["min_n_ops"], config["max_n_ops"]),
gate_set=config["gate_set"],
random_seed=config["random_seed"],
circuit_id=str(i))
except NoMoreProgramsAvailable:
stop_generation = True
if stop_generation:
break
def execute_single_compiler(compiler: Dict[str, Any], comparison_config: Dict[str, Any], config: Dict[str, Any]):
"""Execute the programs of the given compiler."""
click.echo("Joint execution...")
n_shots = config["fixed_sample_size"]
program_folder = get_folder(
config, comparison_config["name"], "programs", compiler["name"])
exec_folder = get_folder(
config, comparison_config["name"], "executions", compiler["name"])
executor = eval(compiler["execution_object"])(repetitions=n_shots)
for circuit_id, qasm_content in iterate_over(program_folder, ".qasm"):
for exec_iteration in range(int(config["n_executions"])):
# load the program
executor.from_qasm(qasm_content)
# execute the program
executor.execute(n_shots)
result = executor.get_result()
with open(os.path.join(exec_folder, f"{circuit_id}_{exec_iteration}.json"), "w") as execution_file:
print(f"Saving execution of: {circuit_id}.json")
json.dump(result, execution_file)
def generate_and_run_programs(config: Dict[str, Any], benchmark_mode: bool=False) -> None:
"""Generate and run the programs."""
prepare_folders(config, benchmark_mode)
# PSEUDO CODE
# if we have two compiler-level generator, use them
# > "programs/compiler_name_1"
# > "programs/compiler_name_2"
# otherwise a single comparison-level generator > "original_programs"
# the execution object is always specified at compiler-level
for comparison in config["comparisons"]:
if comparison.get("is_benchmark", False) != benchmark_mode:
print("Skipping comparison: ", comparison["name"])
if benchmark_mode:
print("[Not part of the benchmark.]")
continue
# GENERATE QASM PROGRAMS
# some compilers (fake ones) might have their own generation strategy,
# such as the random generator, or the case where the programs
# are derived by the original programs appending a not.
master_slave_relationship = comparison["master_slave_relationship"]
# sample generation
if master_slave_relationship == "identical":
generate_once_and_copy(comparison_config=comparison, config=config)
elif master_slave_relationship == "independent":
generate_together(comparison_config=comparison, config=config)
elif master_slave_relationship == "derive_slave_from_master":
generate_once_and_derive(comparison_config=comparison, config=config)
# GENERATE GROUND TRUTH
# ground truth must be generated after the creation of the programs
# because we do not know if all the programs we wanted to generate
# have been created.
# We use only one compiler because at this point both the master and
# the slave will have the same file names to create the ground truths.
if benchmark_mode and \
"expected_divergence" in comparison.keys():
print("Creating ground truth based on expected divergence:",
comparison["name"])
lookup_compiler = get_compiler(
role="master", comparison_config=comparison)
ground_truth_folder = get_folder(
config, comparison["name"], "ground_truth")
record = {"expected_divergence": comparison["expected_divergence"]}
# create ground truth
# based on the number of generated programs in the QASM folder
generated_qasms_filenames = [
f.replace(".qasm", "") for f in os.listdir(get_folder(
config, comparison["name"], "programs", lookup_compiler["name"]))
if f.endswith(".qasm")
]
for i in generated_qasms_filenames:
# save json file with record
record["circuit_id"] = str(i)
record["benchmark_name"] = comparison["name"]
with open(os.path.join(ground_truth_folder, f"{i}.json"), "w") as f:
json.dump(record, f)
# EXECUTE PROGRAMS
# for those which require qconvert create the .py files first
for compiler in comparison["compilers"]:
if compiler.get("execution_object") == "qconvert":
compiler_specific_folder = get_folder(
config, comparison["name"], "programs", compiler["name"])
convert(
source_folder=compiler_specific_folder,
dest_folder=compiler_specific_folder,
dest_format=compiler["platform"],
qconvert_path=config["qconvert_path"])
# the number of shots are available at experiment-level
# in the field "platform_dependent_settings"
current_compiler_settings = [
setting for setting in config["platform_dependent_settings"]
if setting["platform"] == compiler["platform"]][0]
shots_lookup = current_compiler_settings.get("shots_lookup")
shots_substitute = current_compiler_settings.get("shots_substitute")
replace_in_all_files(
folder=compiler_specific_folder,
detect_string=shots_lookup,
substitute_string=shots_substitute.format(
injected_shot=config["fixed_sample_size"]))
run_programs(
source_folder=compiler_specific_folder,
dest_folder=get_folder(
config, comparison["name"], "executions", compiler["name"]),
python_path=config["python_path"],
n_executions=config["n_executions"])
elif compiler.get("execution_object") != "qconvert":
execute_single_compiler(
compiler=compiler,
comparison_config=comparison,
config=config)
def detect_divergence(config: Dict[str, Any], benchmark_mode: bool = False) -> None:
"""Detect the divergence."""
detectors = config["detectors"]
for detector in detectors:
print("-" * 80)
print("Running detector:", detector["name"])
detector_object = eval(detector["detector_object"])()
for comparison in config["comparisons"]:
if comparison.get("is_benchmark", False) != benchmark_mode:
print("Skipping detection: ", comparison["name"])
if benchmark_mode:
print("[Not part of the benchmark.]")
continue
compiler_names = [
compiler["name"] for compiler in comparison["compilers"]]
random_seed = detector.get("random_seed", None)
for program_id, group_same_program_id in iterate_over_program_ids(
execution_folder=get_folder(
config, comparison["name"], "executions"),
compilers_names=compiler_names):
print("Circuit ID: ", program_id)
print("-" * 80)
# print("Elements in the group:", group_same_program_id)
# print("-" * 80)
# generate program-specific json output
prediction = {
"test": detector["name"],
"test_long_name": detector["test_long_name"],
"comparison_name": comparison["name"],
"circuit_id": program_id,
"random_seed": random_seed
}
comparisons = []
for path_exec_a, path_exec_b, res_A, res_B in iterate_over_pairs_of_group(group_same_program_id):
# print("res_a: ", len(res_A))
# print("res_b: ", len(res_B))
sorted_paths = sorted([path_exec_a, path_exec_b])
# ran detector
pair = {
"platform_a": sorted_paths[0].split("/")[-2],
"platform_b": sorted_paths[1].split("/")[-2],
"path_exec_a": sorted_paths[0],
"path_exec_b": sorted_paths[1]
}
try:
start_time = time.time()
statistic, p_value = detector_object.check(res_A, res_B, random_seed)
pair[f"time"] = time.time() - start_time
pair[f"statistic"] = statistic
pair[f"statistic"] = statistic
pair[f"p_value"] = p_value
except Exception as e:
pair[f"time"] = -1
prediction[f"statistic"] = 0
pair[f"p_value"] = -1
pair["exception"] = str(e)
comparisons.append(pair)
# save detector result for this program_ID
prediction["comparisons"] = comparisons
# save file
detector_pred_folder = get_folder(
config, comparison["name"], "predictions", detector["name"])
Path(detector_pred_folder).mkdir(parents=True, exist_ok=True)
with open(os.path.join(detector_pred_folder, program_id + ".json"), "w") as file:
json.dump(prediction, file)
file.close()
@click.group()
def cli():
pass
@cli.command()
@click.argument('config_file')
@click.option('--benchmark', is_flag=True)
def generate(config_file, benchmark):
config = load_config_and_check(config_file, [
"min_n_qubits",
"max_n_qubits",
"n_generated_programs",
"fixed_sample_size"
])
click.echo('Generate and Run Programs')
generate_and_run_programs(config, benchmark)
@cli.command()
@click.argument('config_file')
@click.option('--benchmark', is_flag=True)
def detect(config_file, benchmark):
config = load_config_and_check(config_file, [
"detectors"
])
click.echo('Detect Divergence')
detect_divergence(config, benchmark)
if __name__ == '__main__':
cli()