Skip to content

Latest commit

 

History

History
51 lines (44 loc) · 1.02 KB

README.md

File metadata and controls

51 lines (44 loc) · 1.02 KB

LSTM-Hyperparameter-Optimization-Network-Traffic

Dependency

  • keras
  • pandas
  • numpy
  • scikit-learn
  • scipy
  • seaborn
  • matplotlib
  • yaml

Run Instructions

  • To run the the code please run the following command from your project directory
$ python BO.py [link-number] [lstm-architecture]

To predict on link 3 using 1 layer LSTM:

$ python BO.py 3 L1

To predict on link 4 using 4 layer LSTM:

$ python BO.py 4 L4
  • To run optimization on all 8 links for an architetcure please use the following command from your project directory
$ sh run.sh [lstm-architecture]

To run optimization for 2 layer LSTM:

$ sh run.sh L2

To run optimization for 4 layer LSTM:

$ sh run.sh L4

Contacts

Acknowledgement

This project is a collaboration with Lawrence Berkeley National Laboratory under DOE Contract number for Deep Learning FP00006145 investigating Large-Scale Deep Learning for Intelligent Networks.