-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparse.py
159 lines (113 loc) · 5.4 KB
/
parse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from langchain_ollama import OllamaLLM
from langchain_core.prompts import ChatPromptTemplate, PromptTemplate
import selenium.webdriver as webdriver
from selenium.webdriver.chrome.service import Service
from bs4 import BeautifulSoup
from sentence_transformers import SentenceTransformer, util
template = (
"You are tasked with answering the following prompt: {description}. "
"Please follow these instructions carefully: \n\n"
"1. Only pay attention to the question in {description} and don't answer to other questions."
"2. Provide accurate and complete answers to the best of your knowledge."
"3. If there is any exact information corresponding to the {description} in {dom_content}, check your answers with it, else answer based on your own knowledge."
"4. Look {dom_content} for real-time access if needed."
# "5. When you can't answer based on {dom_content}, answer based on your own knowledge."
# "5. Do not reference external content or indicate where the information comes from. Just provide the a straightforward aswer."
)
# template = (
# "You are tasked with answering the following prompt: {description}. "
# "First, provide an initial answer based on your knowledge. "
# "Then, reflect on your initial answer and determine if it was accurate or not by using {dom_content}. "
# "If your initial answer was incorrect or incomplete, revise your answer accordingly. "
# "Respond in the meantime that you are generating your answers."
# "Please submit only the revised version of your answer."
# "Use the {example} to understand how you should respond."
# )
model = OllamaLLM(model="llama3.1")
# def parse_with_ollama(dom_chunks, description):
# prompt = PromptTemplate.from_template(template)
# chain = prompt | model
# results = []
# for i, chunk in enumerate(dom_chunks, start=1):
# response = chain.invoke(
# {"dom_content": chunk, "description": description}
# )
# print(f"Result batch: {i} of {len(dom_chunks)}")
# results.append(response)
# return "\n".join(results)
# Load a pre-trained model for computing similarity
similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
def compute_similarity(description, chunk):
# Encode both description and chunk content into vector embeddings
description_embedding = similarity_model.encode(description, convert_to_tensor=True)
chunk_embedding = similarity_model.encode(chunk, convert_to_tensor=True)
# Compute cosine similarity between the description and content chunk
similarity_score = util.pytorch_cos_sim(description_embedding, chunk_embedding)
return similarity_score.item() # Convert to a scalar value
def normalize_scores(scores):
"""Normalize scores to a 0-1 range."""
min_score = min(scores)
max_score = max(scores)
# Handle case where all scores are the same
if max_score == min_score:
return [1.0] * len(scores)
return [(score - min_score) / (max_score - min_score) for score in scores]
def weighted_merge_responses(responses, weights):
"""Merge the responses, weighting by their normalized scores."""
weighted_result = ""
for response, weight in zip(responses, weights):
print(response, weight)
weighted_result += response * int(weight) #It's just considering 0 and 1.
return weighted_result
def parse(dom_chunks, description):
prompt = PromptTemplate.from_template(template)
chain = prompt | model
responses = []
scores = []
for i, chunk in enumerate(dom_chunks, start=1):
# Model generates the response
response = chain.invoke(
{"dom_content": chunk, "description": description}
)
print(f"Result batch: {i} of {len(dom_chunks)}")
# Compute the relevance score for the current chunk
score = compute_similarity(description, chunk)
scores.append(score) # Store the relevance score
responses.append(response) # Store the model's response
# Normalize the relevance scores to a 0-1 range
normalized_scores = normalize_scores(scores)
# Merge the responses, weighted by their normalized scores
weighted_result = weighted_merge_responses(responses, normalized_scores)
return weighted_result
def scrape(website):
chrome_driver_path = "./chromedriver"
options = webdriver.ChromeOptions()
options.add_argument("--headless")
driver = webdriver.Chrome(service=Service(chrome_driver_path), options=options)
try:
driver.get(website)
print("Page loaded...")
html = driver.page_source
return html
finally:
driver.quit()
def extract_body_content(html_content):
soup = BeautifulSoup(html_content, "html.parser")
body_content = soup.body
if body_content:
return str(body_content)
return ""
def clean_body_content(body_content):
soup = BeautifulSoup(body_content, "html.parser")
for script_or_style in soup(["script", "style"]):
script_or_style.extract()
# Get text or further process the content
cleaned_content = soup.get_text(separator="\n")
cleaned_content = "\n".join(
line.strip() for line in cleaned_content.splitlines() if line.strip()
)
return cleaned_content
def split_content(dom_content, max_length=3000):
return [
dom_content[i : i + max_length] for i in range(0, len(dom_content), max_length)
]