diff --git a/trackpy/motion.py b/trackpy/motion.py index 76b7e75d..19752293 100644 --- a/trackpy/motion.py +++ b/trackpy/motion.py @@ -108,8 +108,10 @@ def _msd_gaps(traj, mpp, fps, max_lagtime=100, detail=False, pos_columns=None): result = pd.DataFrame(_msd_iter(pos.values, lagtimes), columns=result_columns, index=lagtimes) - result['msd'] = result[result_columns[-len(pos_columns):]].sum(1, skipna=False) + if detail: + result['msd'] = result[result_columns[-len(pos_columns):]].sum(1, skipna=False) + # effective number of measurements # approximately corrected with number of gaps result['N'] = _msd_N(len(pos), lagtimes) * len(traj) / len(pos) @@ -117,6 +119,11 @@ def _msd_gaps(traj, mpp, fps, max_lagtime=100, detail=False, pos_columns=None): result['N'] = np.where(result['msd'].isna(), 0, result['N']) # An alternative option at this point would be to scale up N for the rest of the column + # remove np.nan because it causes problems + result['msd'] = np.where(result['msd'].isna(), 0, result['msd']) + else: + result['msd'] = result[result_columns[-len(pos_columns):]].sum(1, skipna=True) + result['lagt'] = result.index.values/float(fps) result.index.name = 'lagt' return result @@ -236,10 +243,6 @@ def emsd(traj, mpp, fps, max_lagtime=100, detail=False, pos_columns=None): msds.append(msd(ptraj, mpp, fps, max_lagtime, True, pos_columns)) ids.append(pid) msds = pandas_concat(msds, keys=ids, names=['particle', 'frame']) - - # remove np.nan because it would make the rest of the calculation break - msds['msd'] = np.where(msds['msd'].isna(), 0, msds['msd']) - results = msds.mul(msds['N'], axis=0).groupby(level=1).mean() # weighted average results = results.div(msds['N'].groupby(level=1).mean(), axis=0) # weights normalized # Above, lagt is lumped in with the rest for simplicity and speed.