-
Notifications
You must be signed in to change notification settings - Fork 0
/
Q6.a
258 lines (152 loc) · 5.72 KB
/
Q6.a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#!/usr/bin/env python
# coding: utf-8
# In[2]:
import numpy as np
import pandas as pd
# In[3]:
data = pd.read_csv("fashion-mnist_train.csv")
valid_split = 0.3
def train_test_split(data,valid_split):
'''
This function splits the data into validation set and train set
'''
data = data.values[:,:]
np.random.shuffle(data) # randomly shuffling the data
total_count = len(data)
valid_count = int(valid_split * total_count)
valid_data = data[0:valid_count,:]
train_data = data[valid_count:,:]
return valid_data,train_data
valid_data,train_data = train_test_split(data,valid_split)
valid_label = valid_data[:,0] #validation labels
train_label = train_data[:,0] #train labels
valid_data = valid_data[:,1:] # remove first column (labels)
train_data = train_data[:,1:]
# Binarize the data
threshold = 127
def binarization(data,threshold):
data[data <= threshold] = 0
data[data > threshold] = 1
return data
valid_binary_data = binarization(valid_data,threshold) #binary validaiton examples
train_binary_data = binarization(train_data,threshold) #binary training examples
# In[4]:
def sigmoid(x):
return 1/(1+np.exp(-x))
# In[5]:
def sigmoid_derivative(x):
return sigmoid(x) *(1-sigmoid (x))
# In[6]:
def softmax(x):
expo = np.exp(x)
return expo / expo.sum(axis=1, keepdims=True)
# In[ ]:
# # Constrastive Divergence
# In[14]:
hidden_units = 256
epochs = 20
CD_steps = 5
lr = 0.1
# In[15]:
visible_units = train_binary_data.shape[1]
weights = np.random.rand(visible_units,hidden_units)
# In[16]:
def training(bdata,weights,epochs,lr,CD_steps,hidden_units):
'''
bdata: binary data (each row corrosponds to one example)
lr: learning rate
CD_steps: Contrastive divergence steps
'''
data = np.insert(bdata,0,1,axis=1) # first feature as 1 (to accomodate bias term)
weights = np.insert(weights,0,0,axis=0) #accomodate bias of visible and hidden layers [ don't care,b1,b2] [don't care, c1,c2,...]
weights = np.insert(weights,0,0,axis=1)
accuracy =[]
for i in range(epochs):
for j in range(CD_steps):
#Positive CD (hidden state estimation)
hidden_pre_act = np.dot(data,weights)
hidden_act = sigmoid(hidden_pre_act)
hidden_act[:,0] = 1 # as 1st column is garbage, make it bias state of h [1,h1,h2,......] --- (0,1)
sto_rand = np.random.rand(data.shape[0],hidden_units+1) #+1 for dummy index 0
hidden_state = hidden_act > sto_rand #stochasticity [binary]
data_expectation = np.dot(data.T,hidden_act)
# Negative CD (visible state reconstruction)
visible_pre_act = np.dot(hidden_state,weights.T)
visible_act = sigmoid(visible_pre_act)
visible_act[:,0] = 1 #visible bias (0,1)
#model expectation
model_hidden_pre_act = np.dot(visible_act,weights)
model_hidden_act = sigmoid(model_hidden_pre_act)
if j == CD_steps-1:
model_hidden_act = model_hidden_act
else:
model_hidden_act[:,0] = 1 #fix biases
model_expectation = np.dot(visible_act.T,model_hidden_act)
error = np.mean((data-visible_act)**2)
#accuracy.append(1-error)
weights = weights + lr * ((data_expectation-model_expectation)/data.shape[0]) #update rule
error = np.mean((data-visible_act)**2)
print("Epoch = \t %s \t\t Error = \t %s \t\t Accuracy = \t %s" %(i+1,error,1-error))
accuracy.append(1-error)
hidden_out = sigmoid(np.dot(data,weights))
hidden_out[:,0] = 1
return weights,accuracy
# In[17]:
weights,accuracy = training(valid_binary_data,weights,epochs,lr,CD_steps,hidden_units)
# In[18]:
def hidden_state(weights,data):
'''
data: binary
'''
data = np.insert(data, 0, 1, axis = 1)
h = np.dot(data, weights)
h = h[:,1:]
return h
# In[19]:
train_hidden_rep = hidden_state(weights,valid_binary_data)
# In[ ]:
# In[ ]:
# In[20]:
def image_classification(x,y,lr,epochs,hidden_units):
'''
x: hidden unit features
y: labels
lr: learning rate
hidden_units: neurons count in layer1
'''
classes = 10
examples,features = x.shape
one_hot_labels = np.zeros((examples,10))
for i in range(examples):
one_hot_labels[i,y[i]] = 1
w1 = np.random.rand(features,hidden_units)
b1 = np.random.rand(hidden_units)
w2 = np.random.rand(hidden_units,10)
b2 = np.random.rand(10)
error =[]
accuracy =[]
for i in range(epochs):
#print(i)
pre_act_out1 = np.dot(x, w1) + b1
act_out1 = sigmoid(pre_act_out1)
pre_act_out2 = np.dot(act_out1, w2) + b2
act_out2 = softmax(pre_act_out2)
cost = act_out2 - one_hot_labels
cost1 = np.dot(act_out1.T, cost)
cost2 = np.dot(cost,w2.T)
der_w1 = sigmoid_derivative(pre_act_out1)
cosh1t = np.dot(x.T,der_w1*cost2)
delw = cost2 * der_w1
w1 = w1 -lr * cosh1t
b1 = b1 - lr * cosh1t.sum(axis=0)
w2 = w2 - lr * cost1
b2 = b2 - lr * cost1.sum(axis=0)
err = np.mean(-one_hot_labels * np.log(act_out2+0.0001))
print("Epoch = \t %s \t Error = \t %s \t accuracy = \t %s" %(i,err,1-err))
error.append(err)
accuracy.append(1-err)
return w1,b1,w2,b2,error,accuracy
# In[23]:
w1,b1,w2,b2,error,accuracy = image_classification(train_hidden_rep,valid_label,0.0000013,64*3,16)
# In[ ]:
# In[ ]: