-
Notifications
You must be signed in to change notification settings - Fork 186
/
attconv.py
606 lines (504 loc) · 23.3 KB
/
attconv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Parameter
from torch_geometric.nn.conv import MessagePassing
from torch_geometric.nn.inits import glorot, zeros
from torch_geometric.utils import add_remaining_self_loops, softmax
from torch_scatter import scatter_add
from graphgym.config import cfg
from graphgym.register import register_layer
class GeneralAddAttConvLayer(MessagePassing):
r"""General GNN layer, with add attention"""
def __init__(self,
in_channels,
out_channels,
improved=False,
cached=False,
bias=True,
**kwargs):
super(GeneralAddAttConvLayer, self).__init__(aggr=cfg.gnn.agg,
**kwargs)
self.heads = cfg.gnn.att_heads
self.in_channels = int(in_channels // self.heads * self.heads)
self.out_channels = int(out_channels // self.heads * self.heads)
self.improved = improved
self.cached = cached
self.normalize = cfg.gnn.normalize_adj
self.negative_slope = 0.2
self.head_channels = out_channels // self.heads
self.scaling = self.head_channels**-0.5
self.linear_msg = nn.Linear(in_channels, out_channels, bias=False)
self.att = Parameter(
torch.Tensor(1, self.heads, 2 * self.head_channels))
if bias:
self.bias = Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
glorot(self.att)
zeros(self.bias)
self.cached_result = None
self.cached_num_edges = None
@staticmethod
def norm(edge_index,
num_nodes,
edge_weight=None,
improved=False,
dtype=None):
if edge_weight is None:
edge_weight = torch.ones((edge_index.size(1), ),
dtype=dtype,
device=edge_index.device)
fill_value = 1.0 if not improved else 2.0
edge_index, edge_weight = add_remaining_self_loops(
edge_index, edge_weight, fill_value, num_nodes)
row, col = edge_index
deg = scatter_add(edge_weight, row, dim=0, dim_size=num_nodes)
deg_inv_sqrt = deg.pow(-0.5)
deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0
return edge_index, deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col]
def forward(self, x, edge_index, edge_weight=None):
if self.cached and self.cached_result is not None:
if edge_index.size(1) != self.cached_num_edges:
raise RuntimeError(
'Cached {} number of edges, but found {}. Please '
'disable the caching behavior of this layer by removing '
'the `cached=True` argument in its constructor.'.format(
self.cached_num_edges, edge_index.size(1)))
if not self.cached or self.cached_result is None:
self.cached_num_edges = edge_index.size(1)
if self.normalize:
edge_index, norm = self.norm(edge_index, x.size(self.node_dim),
edge_weight, self.improved,
x.dtype)
else:
norm = edge_weight
self.cached_result = edge_index, norm
edge_index, norm = self.cached_result
x = self.linear_msg(x)
return self.propagate(edge_index, x=x, norm=norm)
def message(self, edge_index_i, x_i, x_j, norm, size_i):
x_i = x_i.view(-1, self.heads, self.head_channels)
x_j = x_j.view(-1, self.heads, self.head_channels)
alpha = (torch.cat([x_i, x_j], dim=-1) * self.att).sum(dim=-1)
alpha = F.leaky_relu(alpha, self.negative_slope)
alpha = softmax(alpha, edge_index_i, num_nodes=size_i)
alpha = alpha.view(-1, self.heads, 1)
return norm.view(-1,
1) * x_j * alpha if norm is not None else x_j * alpha
def update(self, aggr_out):
aggr_out = aggr_out.view(-1, self.out_channels)
if self.bias is not None:
aggr_out = aggr_out + self.bias
return aggr_out
def __repr__(self):
return '{}({}, {}, {})'.format(self.__class__.__name__,
self.in_channels, self.out_channels,
self.heads)
class GeneralMulAttConvLayer(MessagePassing):
r"""General GNN layer, with mul attention"""
def __init__(self,
in_channels,
out_channels,
improved=False,
cached=False,
bias=True,
**kwargs):
super(GeneralMulAttConvLayer, self).__init__(aggr=cfg.gnn.agg,
**kwargs)
self.heads = cfg.gnn.att_heads
self.in_channels = int(in_channels // self.heads * self.heads)
self.out_channels = int(out_channels // self.heads * self.heads)
self.improved = improved
self.cached = cached
self.normalize = cfg.gnn.normalize_adj
self.negative_slope = 0.2
self.head_channels = out_channels // self.heads
self.scaling = self.head_channels**-0.5
self.linear_msg = nn.Linear(in_channels, out_channels, bias=False)
# todo: curently only for single head attention
# self.att = nn.Linear(out_channels, out_channels, bias=True)
self.bias_att = Parameter(torch.Tensor(out_channels))
self.scaler = torch.sqrt(torch.tensor(out_channels, dtype=torch.float))
if bias:
self.bias = Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
zeros(self.bias)
zeros(self.bias_att)
self.cached_result = None
self.cached_num_edges = None
@staticmethod
def norm(edge_index,
num_nodes,
edge_weight=None,
improved=False,
dtype=None):
if edge_weight is None:
edge_weight = torch.ones((edge_index.size(1), ),
dtype=dtype,
device=edge_index.device)
fill_value = 1.0 if not improved else 2.0
edge_index, edge_weight = add_remaining_self_loops(
edge_index, edge_weight, fill_value, num_nodes)
row, col = edge_index
deg = scatter_add(edge_weight, row, dim=0, dim_size=num_nodes)
deg_inv_sqrt = deg.pow(-0.5)
deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0
return edge_index, deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col]
def forward(self, x, edge_index, edge_weight=None):
if self.cached and self.cached_result is not None:
if edge_index.size(1) != self.cached_num_edges:
raise RuntimeError(
'Cached {} number of edges, but found {}. Please '
'disable the caching behavior of this layer by removing '
'the `cached=True` argument in its constructor.'.format(
self.cached_num_edges, edge_index.size(1)))
if not self.cached or self.cached_result is None:
self.cached_num_edges = edge_index.size(1)
if self.normalize:
edge_index, norm = self.norm(edge_index, x.size(self.node_dim),
edge_weight, self.improved,
x.dtype)
else:
norm = edge_weight
self.cached_result = edge_index, norm
edge_index, norm = self.cached_result
x = self.linear_msg(x)
return self.propagate(edge_index, x=x, norm=norm)
def message(self, edge_index_i, x_i, x_j, norm, size_i):
# todo: curently only for single head attention
x_i = x_i.view(-1, self.heads, self.head_channels)
x_j = x_j.view(-1, self.heads, self.head_channels)
alpha = (x_i * x_j + self.bias_att).sum(dim=-1) / self.scaler
# alpha = F.leaky_relu(alpha, self.negative_slope)
alpha = softmax(alpha, edge_index_i, num_nodes=size_i)
alpha = alpha.view(-1, self.heads, 1)
return norm.view(-1,
1) * x_j * alpha if norm is not None else x_j * alpha
def update(self, aggr_out):
aggr_out = aggr_out.view(-1, self.out_channels)
if self.bias is not None:
aggr_out = aggr_out + self.bias
return aggr_out
def __repr__(self):
return '{}({}, {}, {})'.format(self.__class__.__name__,
self.in_channels, self.out_channels,
self.heads)
class GeneralAddAttConv(nn.Module):
def __init__(self, dim_in, dim_out, bias=False, **kwargs):
super(GeneralAddAttConv, self).__init__()
self.model = GeneralAddAttConvLayer(dim_in, dim_out, bias=bias)
def forward(self, batch):
batch.node_feature = self.model(batch.node_feature, batch.edge_index)
return batch
class GeneralMulAttConv(nn.Module):
def __init__(self, dim_in, dim_out, bias=False, **kwargs):
super(GeneralMulAttConv, self).__init__()
self.model = GeneralMulAttConvLayer(dim_in, dim_out, bias=bias)
def forward(self, batch):
batch.node_feature = self.model(batch.node_feature, batch.edge_index)
return batch
register_layer('gaddconv', GeneralAddAttConv)
register_layer('gmulconv', GeneralMulAttConv)
class GeneralEdgeAttConvv1Layer(MessagePassing):
r"""Att conv with edge feature"""
def __init__(self,
in_channels,
out_channels,
task_channels=None,
improved=False,
cached=False,
bias=True,
**kwargs):
super(GeneralEdgeAttConvv1Layer, self).__init__(aggr=cfg.gnn.agg,
**kwargs)
self.heads = cfg.gnn.att_heads
self.in_channels = int(in_channels // self.heads * self.heads)
self.out_channels = int(out_channels // self.heads * self.heads)
self.task_channels = task_channels
self.improved = improved
self.cached = cached
self.normalize = cfg.gnn.normalize_adj
self.msg_direction = cfg.gnn.msg_direction
self.negative_slope = 0.2
self.head_channels = out_channels // self.heads
self.scaling = self.head_channels**-0.5
if self.msg_direction == 'single':
self.linear_msg = nn.Linear(in_channels + cfg.dataset.edge_dim,
out_channels,
bias=False)
else:
self.linear_msg = nn.Linear(in_channels * 2 + cfg.dataset.edge_dim,
out_channels,
bias=False)
self.att_msg = Parameter(
torch.Tensor(1, self.heads, self.head_channels))
if self.task_channels is not None:
self.att_task = Parameter(
torch.Tensor(1, self.heads, self.task_channels))
if cfg.gnn.att_final_linear:
self.linear_final = nn.Linear(out_channels,
out_channels,
bias=False)
if cfg.gnn.att_final_linear_bn:
self.linear_final_bn = nn.BatchNorm1d(out_channels,
eps=cfg.bn.eps,
momentum=cfg.bn.mom)
if bias:
self.bias = Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
glorot(self.att_msg)
if self.task_channels is not None:
glorot(self.att_task)
zeros(self.bias)
self.cached_result = None
self.cached_num_edges = None
@staticmethod
def norm(edge_index,
num_nodes,
edge_weight=None,
improved=False,
dtype=None):
if edge_weight is None:
edge_weight = torch.ones((edge_index.size(1), ),
dtype=dtype,
device=edge_index.device)
fill_value = 1.0 if not improved else 2.0
edge_index, edge_weight = add_remaining_self_loops(
edge_index, edge_weight, fill_value, num_nodes)
row, col = edge_index
deg = scatter_add(edge_weight, row, dim=0, dim_size=num_nodes)
deg_inv_sqrt = deg.pow(-0.5)
deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0
return edge_index, deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col]
def forward(self,
x,
edge_index,
edge_weight=None,
edge_feature=None,
task_emb=None):
if self.cached and self.cached_result is not None:
if edge_index.size(1) != self.cached_num_edges:
raise RuntimeError(
'Cached {} number of edges, but found {}. Please '
'disable the caching behavior of this layer by removing '
'the `cached=True` argument in its constructor.'.format(
self.cached_num_edges, edge_index.size(1)))
if not self.cached or self.cached_result is None:
self.cached_num_edges = edge_index.size(1)
if self.normalize:
edge_index, norm = self.norm(edge_index, x.size(self.node_dim),
edge_weight, self.improved,
x.dtype)
else:
norm = edge_weight
self.cached_result = edge_index, norm
edge_index, norm = self.cached_result
return self.propagate(edge_index,
x=x,
norm=norm,
edge_feature=edge_feature,
task_emb=task_emb)
def message(self, edge_index_i, x_i, x_j, norm, size_i, edge_feature,
task_emb):
if self.msg_direction == 'both':
x_j = torch.cat((x_i, x_j, edge_feature), dim=-1)
else:
x_j = torch.cat((x_j, edge_feature), dim=-1)
x_j = self.linear_msg(x_j)
x_j = x_j.view(-1, self.heads, self.head_channels)
if task_emb is not None:
task_emb = task_emb.view(1, 1, self.task_channels)
alpha = (x_j * self.att_msg).sum(-1) + (task_emb *
self.att_task).sum(-1)
else:
alpha = (x_j * self.att_msg).sum(-1)
alpha = F.leaky_relu(alpha, self.negative_slope)
alpha = softmax(alpha, edge_index_i, num_nodes=size_i)
alpha = alpha.view(-1, self.heads, 1)
return norm.view(-1,
1) * x_j * alpha if norm is not None else x_j * alpha
def update(self, aggr_out):
aggr_out = aggr_out.view(-1, self.out_channels)
if cfg.gnn.att_final_linear_bn:
aggr_out = self.linear_final_bn(aggr_out)
if cfg.gnn.att_final_linear:
aggr_out = self.linear_final(aggr_out)
if self.bias is not None:
aggr_out = aggr_out + self.bias
return aggr_out
def __repr__(self):
return '{}({}, {}, {})'.format(self.__class__.__name__,
self.in_channels, self.out_channels,
self.heads)
class GeneralEdgeAttConvv2Layer(MessagePassing):
r"""Att conv with edge feature v2"""
def __init__(self,
in_channels,
out_channels,
task_channels=None,
improved=False,
cached=False,
bias=True,
**kwargs):
super(GeneralEdgeAttConvv2Layer, self).__init__(aggr=cfg.gnn.agg,
**kwargs)
self.heads = cfg.gnn.att_heads
self.in_channels = int(in_channels // self.heads * self.heads)
self.out_channels = int(out_channels // self.heads * self.heads)
self.task_channels = task_channels
self.improved = improved
self.cached = cached
self.normalize = cfg.gnn.normalize_adj
self.msg_direction = cfg.gnn.msg_direction
self.negative_slope = 0.2
self.head_channels = out_channels // self.heads
self.scaling = self.head_channels**-0.5
if self.msg_direction == 'single':
self.linear_value = nn.Linear(in_channels + cfg.dataset.edge_dim,
out_channels,
bias=bias)
self.linear_key = nn.Linear(in_channels + cfg.dataset.edge_dim,
out_channels,
bias=bias)
else:
self.linear_value = nn.Linear(in_channels * 2 +
cfg.dataset.edge_dim,
out_channels,
bias=bias)
self.linear_key = nn.Linear(in_channels * 2 + cfg.dataset.edge_dim,
out_channels,
bias=bias)
self.att_msg = Parameter(
torch.Tensor(1, self.heads, self.head_channels))
if self.task_channels is not None:
self.att_task = Parameter(
torch.Tensor(1, self.heads, self.task_channels))
if cfg.gnn.att_final_linear:
self.linear_final = nn.Linear(out_channels,
out_channels,
bias=False)
if cfg.gnn.att_final_linear_bn:
self.linear_final_bn = nn.BatchNorm1d(out_channels,
eps=cfg.bn.eps,
momentum=cfg.bn.mom)
if bias:
self.bias = Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
glorot(self.att_msg)
if self.task_channels is not None:
glorot(self.att_task)
zeros(self.bias)
self.cached_result = None
self.cached_num_edges = None
@staticmethod
def norm(edge_index,
num_nodes,
edge_weight=None,
improved=False,
dtype=None):
if edge_weight is None:
edge_weight = torch.ones((edge_index.size(1), ),
dtype=dtype,
device=edge_index.device)
fill_value = 1.0 if not improved else 2.0
edge_index, edge_weight = add_remaining_self_loops(
edge_index, edge_weight, fill_value, num_nodes)
row, col = edge_index
deg = scatter_add(edge_weight, row, dim=0, dim_size=num_nodes)
deg_inv_sqrt = deg.pow(-0.5)
deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0
return edge_index, deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col]
def forward(self,
x,
edge_index,
edge_weight=None,
edge_feature=None,
task_emb=None):
if self.cached and self.cached_result is not None:
if edge_index.size(1) != self.cached_num_edges:
raise RuntimeError(
'Cached {} number of edges, but found {}. Please '
'disable the caching behavior of this layer by removing '
'the `cached=True` argument in its constructor.'.format(
self.cached_num_edges, edge_index.size(1)))
if not self.cached or self.cached_result is None:
self.cached_num_edges = edge_index.size(1)
if self.normalize:
edge_index, norm = self.norm(edge_index, x.size(self.node_dim),
edge_weight, self.improved,
x.dtype)
else:
norm = edge_weight
self.cached_result = edge_index, norm
edge_index, norm = self.cached_result
if self.msg_direction == 'both':
x = (x, x) # todo: check if expected
return self.propagate(edge_index,
x=x,
norm=norm,
edge_feature=edge_feature,
task_emb=task_emb)
def message(self, edge_index_i, x_i, x_j, norm, size_i, edge_feature,
task_emb):
if self.msg_direction == 'both':
x_j = torch.cat((x_i, x_j, edge_feature), dim=-1)
else:
x_j = torch.cat((x_j, edge_feature), dim=-1)
x_j = self.linear_value(x_j)
x_j = x_j.view(-1, self.heads, self.head_channels)
if task_emb is not None:
task_emb = task_emb.view(1, 1, self.task_channels)
alpha = (x_j * self.att_msg).sum(-1) + (task_emb *
self.att_task).sum(-1)
else:
alpha = (x_j * self.att_msg).sum(-1)
alpha = F.leaky_relu(alpha, self.negative_slope)
alpha = softmax(alpha, edge_index_i, num_nodes=size_i)
alpha = alpha.view(-1, self.heads, 1)
return norm.view(-1,
1) * x_j * alpha if norm is not None else x_j * alpha
def update(self, aggr_out):
aggr_out = aggr_out.view(-1, self.out_channels)
if cfg.gnn.att_final_linear_bn:
aggr_out = self.linear_final_bn(aggr_out)
if cfg.gnn.att_final_linear:
aggr_out = self.linear_final(aggr_out)
if self.bias is not None:
aggr_out = aggr_out + self.bias
return aggr_out
def __repr__(self):
return '{}({}, {}, {})'.format(self.__class__.__name__,
self.in_channels, self.out_channels,
self.heads)
class GeneralEdgeAttConvv1(nn.Module):
def __init__(self, dim_in, dim_out, bias=False, **kwargs):
super(GeneralEdgeAttConvv1, self).__init__()
self.model = GeneralEdgeAttConvv1Layer(dim_in, dim_out, bias=bias)
def forward(self, batch):
batch.node_feature = self.model(batch.node_feature,
batch.edge_index,
edge_feature=batch.edge_feature)
return batch
class GeneralEdgeAttConvv2(nn.Module):
def __init__(self, dim_in, dim_out, bias=False, **kwargs):
super(GeneralEdgeAttConvv2, self).__init__()
self.model = GeneralEdgeAttConvv2Layer(dim_in, dim_out, bias=bias)
def forward(self, batch):
batch.node_feature = self.model(batch.node_feature,
batch.edge_index,
edge_feature=batch.edge_feature)
return batch
register_layer('generaledgeattconvv1', GeneralEdgeAttConvv1)
register_layer('generaledgeattconvv2', GeneralEdgeAttConvv2)