-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
179 lines (135 loc) · 6.37 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import numpy as np
import pickle as pkl
import networkx as nx
import scipy.sparse as sp
from scipy.sparse.linalg.eigen.arpack import eigsh
def sample_mask(idx, l):
"""Create mask."""
mask = np.zeros(l)
mask[idx] = 1
return np.array(mask, dtype=np.bool)
def load_data(cell_line, cross_cell_line, label_rate, k_mer):
"""
Load input data from data/cell_line directory.
| lx_20.index | the indices (IDs) of labeled train instances as list object (for label_rate = 20%) |
| ux_20.index | the indices (IDs) of unlabeled train instances as list object (for label_rate = 20%) |
| vx_20.index | the indices (IDs) of validation instances as list object (for label_rate = 20%) |
| tx_20.index | the indices (IDs) of test instances as list object (for label_rate = 20%) |
| features_5mer | the feature vectors of all instances as scipy.sparse.csr.csr_matrix object (for k_mer = 5) |
| nodes | a dict in the format {chromosome_name: ID} as collections.defaultdict object |
| labels | the one-hot labels of all instances as numpy.ndarray object |
| graph | a dict in the format {ID: [IDs_of_neighbor_nodes]} as collections.defaultdict object |
All objects above must be saved using python pickle module.
:param cell_line: Name of the cell line to which the datasets belong
:return: All data input files loaded (as well the training/test data).
"""
if (cross_cell_line != None) and (cross_cell_line != cell_line):
read_dir = 'data/{}_{}/'.format(cell_line, cross_cell_line)
else:
read_dir = 'data/{}/'.format(cell_line)
# STEP 1: Load all feature vectors, class labels and graph
features_file = open('{}/features_{}mer'.format(read_dir, k_mer), "rb")
features = pkl.load(features_file)
features_file.close()
labels_file = open('{}/labels'.format(read_dir), "rb")
labels = pkl.load(labels_file)
labels_file.close()
graph_file = open('{}/graph'.format(read_dir), "rb")
graph = pkl.load(graph_file)
graph_file.close()
adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph))
# STEP 2: Load IDs of labeled_train/unlabeled_train/validation/test nodes
lr = txt = '{:.2f}'.format(label_rate).split('.')[1]
idx_lx_file = open('{}/lx_{}.index'.format(read_dir, lr), "rb")
idx_lx = pkl.load(idx_lx_file)
idx_lx_file.close()
idx_ux_file = open('{}/ux_{}.index'.format(read_dir, lr), "rb")
idx_ux = pkl.load(idx_ux_file)
idx_ux_file.close()
idx_vx_file = open('{}/vx_{}.index'.format(read_dir, lr), "rb")
idx_vx = pkl.load(idx_vx_file)
idx_vx_file.close()
idx_tx_file = open('{}/tx_{}.index'.format(read_dir, lr), "rb")
idx_tx = pkl.load(idx_tx_file)
idx_tx_file.close()
# STEP 3: Take subsets from loaded features and class labels using loaded IDs
x = features[idx_lx]
y = labels[idx_lx]
ux = features[idx_ux]
uy = labels[idx_ux]
vx = features[idx_vx]
vy = labels[idx_vx]
tx = features[idx_tx]
ty = labels[idx_tx]
print("lx={} ux={} vx={} tx={}".format(x.shape[0], ux.shape[0], vx.shape[0], tx.shape[0]))
# STEP 4: Mask labels
train_mask = sample_mask(idx_lx, labels.shape[0])
val_mask = sample_mask(idx_vx, labels.shape[0])
test_mask = sample_mask(idx_tx, labels.shape[0])
y_train = np.zeros(labels.shape)
y_val = np.zeros(labels.shape)
y_test = np.zeros(labels.shape)
y_train[train_mask, :] = labels[train_mask, :]
y_val[val_mask, :] = labels[val_mask, :]
y_test[test_mask, :] = labels[test_mask, :]
return adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask
def sparse_to_tuple(sparse_mx):
"""Convert sparse matrix to tuple representation."""
def to_tuple(mx):
if not sp.isspmatrix_coo(mx):
mx = mx.tocoo()
coords = np.vstack((mx.row, mx.col)).transpose()
values = mx.data
shape = mx.shape
return coords, values, shape
if isinstance(sparse_mx, list):
for i in range(len(sparse_mx)):
sparse_mx[i] = to_tuple(sparse_mx[i])
else:
sparse_mx = to_tuple(sparse_mx)
return sparse_mx
def preprocess_features(features):
"""Row-normalize feature matrix and convert to tuple representation"""
rowsum = np.array(features.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
features = r_mat_inv.dot(features)
return sparse_to_tuple(features)
def normalize_adj(adj):
"""Symmetrically normalize adjacency matrix."""
adj = sp.coo_matrix(adj)
rowsum = np.array(adj.sum(1))
d_inv_sqrt = np.power(rowsum, -0.5).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.
d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo()
def preprocess_adj(adj):
"""Preprocessing of adjacency matrix for simple GCN model and conversion to tuple representation."""
adj_normalized = normalize_adj(adj + sp.eye(adj.shape[0]))
return sparse_to_tuple(adj_normalized)
def construct_feed_dict(features, support, labels, labels_mask, placeholders):
"""Construct feed dictionary."""
feed_dict = dict()
feed_dict.update({placeholders['labels']: labels})
feed_dict.update({placeholders['labels_mask']: labels_mask})
feed_dict.update({placeholders['features']: features})
feed_dict.update({placeholders['support'][i]: support[i] for i in range(len(support))})
feed_dict.update({placeholders['num_features_nonzero']: features[1].shape})
return feed_dict
def chebyshev_polynomials(adj, k):
"""Calculate Chebyshev polynomials up to order k. Return a list of sparse matrices (tuple representation)."""
print("Calculating Chebyshev polynomials up to order {}...".format(k))
adj_normalized = normalize_adj(adj)
laplacian = sp.eye(adj.shape[0]) - adj_normalized
largest_eigval, _ = eigsh(laplacian, 1, which='LM')
scaled_laplacian = (2. / largest_eigval[0]) * laplacian - sp.eye(adj.shape[0])
t_k = list()
t_k.append(sp.eye(adj.shape[0]))
t_k.append(scaled_laplacian)
def chebyshev_recurrence(t_k_minus_one, t_k_minus_two, scaled_lap):
s_lap = sp.csr_matrix(scaled_lap, copy=True)
return 2 * s_lap.dot(t_k_minus_one) - t_k_minus_two
for i in range(2, k+1):
t_k.append(chebyshev_recurrence(t_k[-1], t_k[-2], scaled_laplacian))
return sparse_to_tuple(t_k)