forked from SWivid/F5-TTS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils_infer.py
547 lines (442 loc) · 17.8 KB
/
utils_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
# A unified script for inference process
# Make adjustments inside functions, and consider both gradio and cli scripts if need to change func output format
import os
import sys
os.environ["PYTOCH_ENABLE_MPS_FALLBACK"] = "1" # for MPS device compatibility
sys.path.append(f"../../{os.path.dirname(os.path.abspath(__file__))}/third_party/BigVGAN/")
import hashlib
import re
import tempfile
from importlib.resources import files
import matplotlib
matplotlib.use("Agg")
import matplotlib.pylab as plt
import numpy as np
import torch
import torchaudio
import tqdm
from huggingface_hub import snapshot_download, hf_hub_download
from pydub import AudioSegment, silence
from transformers import pipeline
from vocos import Vocos
from f5_tts.model import CFM
from f5_tts.model.utils import (
get_tokenizer,
convert_char_to_pinyin,
)
_ref_audio_cache = {}
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
# -----------------------------------------
target_sample_rate = 24000
n_mel_channels = 100
hop_length = 256
win_length = 1024
n_fft = 1024
mel_spec_type = "vocos"
target_rms = 0.1
cross_fade_duration = 0.15
ode_method = "euler"
nfe_step = 32 # 16, 32
cfg_strength = 2.0
sway_sampling_coef = -1.0
speed = 1.0
fix_duration = None
# -----------------------------------------
# chunk text into smaller pieces
def chunk_text(text, max_chars=135):
"""
Splits the input text into chunks, each with a maximum number of characters.
Args:
text (str): The text to be split.
max_chars (int): The maximum number of characters per chunk.
Returns:
List[str]: A list of text chunks.
"""
chunks = []
current_chunk = ""
# Split the text into sentences based on punctuation followed by whitespace
sentences = re.split(r"(?<=[;:,.!?])\s+|(?<=[;:,。!?])", text)
for sentence in sentences:
if len(current_chunk.encode("utf-8")) + len(sentence.encode("utf-8")) <= max_chars:
current_chunk += sentence + " " if sentence and len(sentence[-1].encode("utf-8")) == 1 else sentence
else:
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = sentence + " " if sentence and len(sentence[-1].encode("utf-8")) == 1 else sentence
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
# load vocoder
def load_vocoder(vocoder_name="vocos", is_local=False, local_path="", device=device, hf_cache_dir=None):
if vocoder_name == "vocos":
# vocoder = Vocos.from_pretrained("charactr/vocos-mel-24khz").to(device)
if is_local:
print(f"Load vocos from local path {local_path}")
config_path = f"{local_path}/config.yaml"
model_path = f"{local_path}/pytorch_model.bin"
else:
print("Download Vocos from huggingface charactr/vocos-mel-24khz")
repo_id = "charactr/vocos-mel-24khz"
config_path = hf_hub_download(repo_id=repo_id, cache_dir=hf_cache_dir, filename="config.yaml")
model_path = hf_hub_download(repo_id=repo_id, cache_dir=hf_cache_dir, filename="pytorch_model.bin")
vocoder = Vocos.from_hparams(config_path)
state_dict = torch.load(model_path, map_location="cpu", weights_only=True)
from vocos.feature_extractors import EncodecFeatures
if isinstance(vocoder.feature_extractor, EncodecFeatures):
encodec_parameters = {
"feature_extractor.encodec." + key: value
for key, value in vocoder.feature_extractor.encodec.state_dict().items()
}
state_dict.update(encodec_parameters)
vocoder.load_state_dict(state_dict)
vocoder = vocoder.eval().to(device)
elif vocoder_name == "bigvgan":
try:
from third_party.BigVGAN import bigvgan
except ImportError:
print("You need to follow the README to init submodule and change the BigVGAN source code.")
if is_local:
"""download from https://huggingface.co/nvidia/bigvgan_v2_24khz_100band_256x/tree/main"""
vocoder = bigvgan.BigVGAN.from_pretrained(local_path, use_cuda_kernel=False)
else:
local_path = snapshot_download(repo_id="nvidia/bigvgan_v2_24khz_100band_256x", cache_dir=hf_cache_dir)
vocoder = bigvgan.BigVGAN.from_pretrained(local_path, use_cuda_kernel=False)
vocoder.remove_weight_norm()
vocoder = vocoder.eval().to(device)
return vocoder
# load asr pipeline
asr_pipe = None
def initialize_asr_pipeline(device: str = device, dtype=None):
if dtype is None:
dtype = (
torch.float16
if "cuda" in device
and torch.cuda.get_device_properties(device).major >= 6
and not torch.cuda.get_device_name().endswith("[ZLUDA]")
else torch.float32
)
global asr_pipe
asr_pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-large-v3-turbo",
torch_dtype=dtype,
device=device,
)
# transcribe
def transcribe(ref_audio, language=None):
global asr_pipe
if asr_pipe is None:
initialize_asr_pipeline(device=device)
return asr_pipe(
ref_audio,
chunk_length_s=30,
batch_size=128,
generate_kwargs={"task": "transcribe", "language": language} if language else {"task": "transcribe"},
return_timestamps=False,
)["text"].strip()
# load model checkpoint for inference
def load_checkpoint(model, ckpt_path, device: str, dtype=None, use_ema=True):
if dtype is None:
dtype = (
torch.float16
if "cuda" in device
and torch.cuda.get_device_properties(device).major >= 6
and not torch.cuda.get_device_name().endswith("[ZLUDA]")
else torch.float32
)
model = model.to(dtype)
ckpt_type = ckpt_path.split(".")[-1]
if ckpt_type == "safetensors":
from safetensors.torch import load_file
checkpoint = load_file(ckpt_path, device=device)
else:
checkpoint = torch.load(ckpt_path, map_location=device, weights_only=True)
if use_ema:
if ckpt_type == "safetensors":
checkpoint = {"ema_model_state_dict": checkpoint}
checkpoint["model_state_dict"] = {
k.replace("ema_model.", ""): v
for k, v in checkpoint["ema_model_state_dict"].items()
if k not in ["initted", "step"]
}
# patch for backward compatibility, 305e3ea
for key in ["mel_spec.mel_stft.mel_scale.fb", "mel_spec.mel_stft.spectrogram.window"]:
if key in checkpoint["model_state_dict"]:
del checkpoint["model_state_dict"][key]
model.load_state_dict(checkpoint["model_state_dict"])
else:
if ckpt_type == "safetensors":
checkpoint = {"model_state_dict": checkpoint}
model.load_state_dict(checkpoint["model_state_dict"])
del checkpoint
torch.cuda.empty_cache()
return model.to(device)
# load model for inference
def load_model(
model_cls,
model_cfg,
ckpt_path,
mel_spec_type=mel_spec_type,
vocab_file="",
ode_method=ode_method,
use_ema=True,
device=device,
):
if vocab_file == "":
vocab_file = str(files("f5_tts").joinpath("infer/examples/vocab.txt"))
tokenizer = "custom"
print("\nvocab : ", vocab_file)
print("token : ", tokenizer)
print("model : ", ckpt_path, "\n")
vocab_char_map, vocab_size = get_tokenizer(vocab_file, tokenizer)
model = CFM(
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
mel_spec_kwargs=dict(
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
n_mel_channels=n_mel_channels,
target_sample_rate=target_sample_rate,
mel_spec_type=mel_spec_type,
),
odeint_kwargs=dict(
method=ode_method,
),
vocab_char_map=vocab_char_map,
).to(device)
dtype = torch.float32 if mel_spec_type == "bigvgan" else None
model = load_checkpoint(model, ckpt_path, device, dtype=dtype, use_ema=use_ema)
return model
def remove_silence_edges(audio, silence_threshold=-42):
# Remove silence from the start
non_silent_start_idx = silence.detect_leading_silence(audio, silence_threshold=silence_threshold)
audio = audio[non_silent_start_idx:]
# Remove silence from the end
non_silent_end_duration = audio.duration_seconds
for ms in reversed(audio):
if ms.dBFS > silence_threshold:
break
non_silent_end_duration -= 0.001
trimmed_audio = audio[: int(non_silent_end_duration * 1000)]
return trimmed_audio
# preprocess reference audio and text
def preprocess_ref_audio_text(ref_audio_orig, ref_text, clip_short=True, show_info=print, device=device):
show_info("Converting audio...")
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
aseg = AudioSegment.from_file(ref_audio_orig)
if clip_short:
# 1. try to find long silence for clipping
non_silent_segs = silence.split_on_silence(
aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=1000, seek_step=10
)
non_silent_wave = AudioSegment.silent(duration=0)
for non_silent_seg in non_silent_segs:
if len(non_silent_wave) > 6000 and len(non_silent_wave + non_silent_seg) > 15000:
show_info("Audio is over 15s, clipping short. (1)")
break
non_silent_wave += non_silent_seg
# 2. try to find short silence for clipping if 1. failed
if len(non_silent_wave) > 15000:
non_silent_segs = silence.split_on_silence(
aseg, min_silence_len=100, silence_thresh=-40, keep_silence=1000, seek_step=10
)
non_silent_wave = AudioSegment.silent(duration=0)
for non_silent_seg in non_silent_segs:
if len(non_silent_wave) > 6000 and len(non_silent_wave + non_silent_seg) > 15000:
show_info("Audio is over 15s, clipping short. (2)")
break
non_silent_wave += non_silent_seg
aseg = non_silent_wave
# 3. if no proper silence found for clipping
if len(aseg) > 15000:
aseg = aseg[:15000]
show_info("Audio is over 15s, clipping short. (3)")
aseg = remove_silence_edges(aseg) + AudioSegment.silent(duration=50)
aseg.export(f.name, format="wav")
ref_audio = f.name
# Compute a hash of the reference audio file
with open(ref_audio, "rb") as audio_file:
audio_data = audio_file.read()
audio_hash = hashlib.md5(audio_data).hexdigest()
if not ref_text.strip():
global _ref_audio_cache
if audio_hash in _ref_audio_cache:
# Use cached asr transcription
show_info("Using cached reference text...")
ref_text = _ref_audio_cache[audio_hash]
else:
show_info("No reference text provided, transcribing reference audio...")
ref_text = transcribe(ref_audio)
# Cache the transcribed text (not caching custom ref_text, enabling users to do manual tweak)
_ref_audio_cache[audio_hash] = ref_text
else:
show_info("Using custom reference text...")
# Ensure ref_text ends with a proper sentence-ending punctuation
if not ref_text.endswith(". ") and not ref_text.endswith("。"):
if ref_text.endswith("."):
ref_text += " "
else:
ref_text += ". "
print("\nref_text ", ref_text)
return ref_audio, ref_text
# infer process: chunk text -> infer batches [i.e. infer_batch_process()]
def infer_process(
ref_audio,
ref_text,
gen_text,
model_obj,
vocoder,
mel_spec_type=mel_spec_type,
show_info=print,
progress=tqdm,
target_rms=target_rms,
cross_fade_duration=cross_fade_duration,
nfe_step=nfe_step,
cfg_strength=cfg_strength,
sway_sampling_coef=sway_sampling_coef,
speed=speed,
fix_duration=fix_duration,
device=device,
):
# Split the input text into batches
audio, sr = torchaudio.load(ref_audio)
max_chars = int(len(ref_text.encode("utf-8")) / (audio.shape[-1] / sr) * (25 - audio.shape[-1] / sr))
gen_text_batches = chunk_text(gen_text, max_chars=max_chars)
for i, gen_text in enumerate(gen_text_batches):
print(f"gen_text {i}", gen_text)
print("\n")
show_info(f"Generating audio in {len(gen_text_batches)} batches...")
return infer_batch_process(
(audio, sr),
ref_text,
gen_text_batches,
model_obj,
vocoder,
mel_spec_type=mel_spec_type,
progress=progress,
target_rms=target_rms,
cross_fade_duration=cross_fade_duration,
nfe_step=nfe_step,
cfg_strength=cfg_strength,
sway_sampling_coef=sway_sampling_coef,
speed=speed,
fix_duration=fix_duration,
device=device,
)
# infer batches
def infer_batch_process(
ref_audio,
ref_text,
gen_text_batches,
model_obj,
vocoder,
mel_spec_type="vocos",
progress=tqdm,
target_rms=0.1,
cross_fade_duration=0.15,
nfe_step=32,
cfg_strength=2.0,
sway_sampling_coef=-1,
speed=1,
fix_duration=None,
device=None,
):
audio, sr = ref_audio
if audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True)
rms = torch.sqrt(torch.mean(torch.square(audio)))
if rms < target_rms:
audio = audio * target_rms / rms
if sr != target_sample_rate:
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
audio = resampler(audio)
audio = audio.to(device)
generated_waves = []
spectrograms = []
if len(ref_text[-1].encode("utf-8")) == 1:
ref_text = ref_text + " "
for i, gen_text in enumerate(progress.tqdm(gen_text_batches)):
# Prepare the text
text_list = [ref_text + gen_text]
final_text_list = convert_char_to_pinyin(text_list)
ref_audio_len = audio.shape[-1] // hop_length
if fix_duration is not None:
duration = int(fix_duration * target_sample_rate / hop_length)
else:
# Calculate duration
ref_text_len = len(ref_text.encode("utf-8"))
gen_text_len = len(gen_text.encode("utf-8"))
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
# inference
with torch.inference_mode():
generated, _ = model_obj.sample(
cond=audio,
text=final_text_list,
duration=duration,
steps=nfe_step,
cfg_strength=cfg_strength,
sway_sampling_coef=sway_sampling_coef,
)
generated = generated.to(torch.float32)
generated = generated[:, ref_audio_len:, :]
generated_mel_spec = generated.permute(0, 2, 1)
if mel_spec_type == "vocos":
generated_wave = vocoder.decode(generated_mel_spec)
elif mel_spec_type == "bigvgan":
generated_wave = vocoder(generated_mel_spec)
if rms < target_rms:
generated_wave = generated_wave * rms / target_rms
# wav -> numpy
generated_wave = generated_wave.squeeze().cpu().numpy()
generated_waves.append(generated_wave)
spectrograms.append(generated_mel_spec[0].cpu().numpy())
# Combine all generated waves with cross-fading
if cross_fade_duration <= 0:
# Simply concatenate
final_wave = np.concatenate(generated_waves)
else:
final_wave = generated_waves[0]
for i in range(1, len(generated_waves)):
prev_wave = final_wave
next_wave = generated_waves[i]
# Calculate cross-fade samples, ensuring it does not exceed wave lengths
cross_fade_samples = int(cross_fade_duration * target_sample_rate)
cross_fade_samples = min(cross_fade_samples, len(prev_wave), len(next_wave))
if cross_fade_samples <= 0:
# No overlap possible, concatenate
final_wave = np.concatenate([prev_wave, next_wave])
continue
# Overlapping parts
prev_overlap = prev_wave[-cross_fade_samples:]
next_overlap = next_wave[:cross_fade_samples]
# Fade out and fade in
fade_out = np.linspace(1, 0, cross_fade_samples)
fade_in = np.linspace(0, 1, cross_fade_samples)
# Cross-faded overlap
cross_faded_overlap = prev_overlap * fade_out + next_overlap * fade_in
# Combine
new_wave = np.concatenate(
[prev_wave[:-cross_fade_samples], cross_faded_overlap, next_wave[cross_fade_samples:]]
)
final_wave = new_wave
# Create a combined spectrogram
combined_spectrogram = np.concatenate(spectrograms, axis=1)
return final_wave, target_sample_rate, combined_spectrogram
# remove silence from generated wav
def remove_silence_for_generated_wav(filename):
aseg = AudioSegment.from_file(filename)
non_silent_segs = silence.split_on_silence(
aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500, seek_step=10
)
non_silent_wave = AudioSegment.silent(duration=0)
for non_silent_seg in non_silent_segs:
non_silent_wave += non_silent_seg
aseg = non_silent_wave
aseg.export(filename, format="wav")
# save spectrogram
def save_spectrogram(spectrogram, path):
plt.figure(figsize=(12, 4))
plt.imshow(spectrogram, origin="lower", aspect="auto")
plt.colorbar()
plt.savefig(path)
plt.close()