forked from SWivid/F5-TTS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
infer_gradio.py
851 lines (713 loc) · 31.5 KB
/
infer_gradio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
# ruff: noqa: E402
# Above allows ruff to ignore E402: module level import not at top of file
import re
import tempfile
from collections import OrderedDict
from importlib.resources import files
import click
import gradio as gr
import numpy as np
import soundfile as sf
import torchaudio
from cached_path import cached_path
from transformers import AutoModelForCausalLM, AutoTokenizer
try:
import spaces
USING_SPACES = True
except ImportError:
USING_SPACES = False
def gpu_decorator(func):
if USING_SPACES:
return spaces.GPU(func)
else:
return func
from f5_tts.model import DiT, UNetT
from f5_tts.infer.utils_infer import (
load_vocoder,
load_model,
preprocess_ref_audio_text,
infer_process,
remove_silence_for_generated_wav,
save_spectrogram,
)
DEFAULT_TTS_MODEL = "F5-TTS"
tts_model_choice = DEFAULT_TTS_MODEL
# load models
vocoder = load_vocoder()
def load_f5tts(ckpt_path=str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors"))):
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
return load_model(DiT, F5TTS_model_cfg, ckpt_path)
def load_e2tts(ckpt_path=str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors"))):
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
return load_model(UNetT, E2TTS_model_cfg, ckpt_path)
def load_custom(ckpt_path: str, vocab_path="", model_cfg=None):
ckpt_path, vocab_path = ckpt_path.strip(), vocab_path.strip()
if ckpt_path.startswith("hf://"):
ckpt_path = str(cached_path(ckpt_path))
if vocab_path.startswith("hf://"):
vocab_path = str(cached_path(vocab_path))
if model_cfg is None:
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
return load_model(DiT, model_cfg, ckpt_path, vocab_file=vocab_path)
F5TTS_ema_model = load_f5tts()
E2TTS_ema_model = load_e2tts() if USING_SPACES else None
custom_ema_model, pre_custom_path = None, ""
chat_model_state = None
chat_tokenizer_state = None
@gpu_decorator
def generate_response(messages, model, tokenizer):
"""Generate response using Qwen"""
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512,
temperature=0.7,
top_p=0.95,
)
generated_ids = [
output_ids[len(input_ids) :] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
return tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
@gpu_decorator
def infer(
ref_audio_orig, ref_text, gen_text, model, remove_silence, cross_fade_duration=0.15, speed=1, show_info=gr.Info
):
ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=show_info)
if model == "F5-TTS":
ema_model = F5TTS_ema_model
elif model == "E2-TTS":
global E2TTS_ema_model
if E2TTS_ema_model is None:
show_info("Loading E2-TTS model...")
E2TTS_ema_model = load_e2tts()
ema_model = E2TTS_ema_model
elif isinstance(model, list) and model[0] == "Custom":
assert not USING_SPACES, "Only official checkpoints allowed in Spaces."
global custom_ema_model, pre_custom_path
if pre_custom_path != model[1]:
show_info("Loading Custom TTS model...")
custom_ema_model = load_custom(model[1], vocab_path=model[2])
pre_custom_path = model[1]
ema_model = custom_ema_model
final_wave, final_sample_rate, combined_spectrogram = infer_process(
ref_audio,
ref_text,
gen_text,
ema_model,
vocoder,
cross_fade_duration=cross_fade_duration,
speed=speed,
show_info=show_info,
progress=gr.Progress(),
)
# Remove silence
if remove_silence:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
sf.write(f.name, final_wave, final_sample_rate)
remove_silence_for_generated_wav(f.name)
final_wave, _ = torchaudio.load(f.name)
final_wave = final_wave.squeeze().cpu().numpy()
# Save the spectrogram
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
spectrogram_path = tmp_spectrogram.name
save_spectrogram(combined_spectrogram, spectrogram_path)
return (final_sample_rate, final_wave), spectrogram_path, ref_text
with gr.Blocks() as app_credits:
gr.Markdown("""
# Credits
* [mrfakename](https://github.com/fakerybakery) for the original [online demo](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
* [RootingInLoad](https://github.com/RootingInLoad) for initial chunk generation and podcast app exploration
* [jpgallegoar](https://github.com/jpgallegoar) for multiple speech-type generation & voice chat
""")
with gr.Blocks() as app_tts:
gr.Markdown("# Batched TTS")
ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
gen_text_input = gr.Textbox(label="Text to Generate", lines=10)
generate_btn = gr.Button("Synthesize", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
ref_text_input = gr.Textbox(
label="Reference Text",
info="Leave blank to automatically transcribe the reference audio. If you enter text it will override automatic transcription.",
lines=2,
)
remove_silence = gr.Checkbox(
label="Remove Silences",
info="The model tends to produce silences, especially on longer audio. We can manually remove silences if needed. Note that this is an experimental feature and may produce strange results. This will also increase generation time.",
value=False,
)
speed_slider = gr.Slider(
label="Speed",
minimum=0.3,
maximum=2.0,
value=1.0,
step=0.1,
info="Adjust the speed of the audio.",
)
cross_fade_duration_slider = gr.Slider(
label="Cross-Fade Duration (s)",
minimum=0.0,
maximum=1.0,
value=0.15,
step=0.01,
info="Set the duration of the cross-fade between audio clips.",
)
audio_output = gr.Audio(label="Synthesized Audio")
spectrogram_output = gr.Image(label="Spectrogram")
@gpu_decorator
def basic_tts(
ref_audio_input,
ref_text_input,
gen_text_input,
remove_silence,
cross_fade_duration_slider,
speed_slider,
):
audio_out, spectrogram_path, ref_text_out = infer(
ref_audio_input,
ref_text_input,
gen_text_input,
tts_model_choice,
remove_silence,
cross_fade_duration_slider,
speed_slider,
)
return audio_out, spectrogram_path, gr.update(value=ref_text_out)
generate_btn.click(
basic_tts,
inputs=[
ref_audio_input,
ref_text_input,
gen_text_input,
remove_silence,
cross_fade_duration_slider,
speed_slider,
],
outputs=[audio_output, spectrogram_output, ref_text_input],
)
def parse_speechtypes_text(gen_text):
# Pattern to find {speechtype}
pattern = r"\{(.*?)\}"
# Split the text by the pattern
tokens = re.split(pattern, gen_text)
segments = []
current_style = "Regular"
for i in range(len(tokens)):
if i % 2 == 0:
# This is text
text = tokens[i].strip()
if text:
segments.append({"style": current_style, "text": text})
else:
# This is style
style = tokens[i].strip()
current_style = style
return segments
with gr.Blocks() as app_multistyle:
# New section for multistyle generation
gr.Markdown(
"""
# Multiple Speech-Type Generation
This section allows you to generate multiple speech types or multiple people's voices. Enter your text in the format shown below, and the system will generate speech using the appropriate type. If unspecified, the model will use the regular speech type. The current speech type will be used until the next speech type is specified.
"""
)
with gr.Row():
gr.Markdown(
"""
**Example Input:**
{Regular} Hello, I'd like to order a sandwich please.
{Surprised} What do you mean you're out of bread?
{Sad} I really wanted a sandwich though...
{Angry} You know what, darn you and your little shop!
{Whisper} I'll just go back home and cry now.
{Shouting} Why me?!
"""
)
gr.Markdown(
"""
**Example Input 2:**
{Speaker1_Happy} Hello, I'd like to order a sandwich please.
{Speaker2_Regular} Sorry, we're out of bread.
{Speaker1_Sad} I really wanted a sandwich though...
{Speaker2_Whisper} I'll give you the last one I was hiding.
"""
)
gr.Markdown(
"Upload different audio clips for each speech type. The first speech type is mandatory. You can add additional speech types by clicking the 'Add Speech Type' button."
)
# Regular speech type (mandatory)
with gr.Row():
with gr.Column():
regular_name = gr.Textbox(value="Regular", label="Speech Type Name")
regular_insert = gr.Button("Insert Label", variant="secondary")
regular_audio = gr.Audio(label="Regular Reference Audio", type="filepath")
regular_ref_text = gr.Textbox(label="Reference Text (Regular)", lines=2)
# Regular speech type (max 100)
max_speech_types = 100
speech_type_rows = [] # 99
speech_type_names = [regular_name] # 100
speech_type_audios = [regular_audio] # 100
speech_type_ref_texts = [regular_ref_text] # 100
speech_type_delete_btns = [] # 99
speech_type_insert_btns = [regular_insert] # 100
# Additional speech types (99 more)
for i in range(max_speech_types - 1):
with gr.Row(visible=False) as row:
with gr.Column():
name_input = gr.Textbox(label="Speech Type Name")
delete_btn = gr.Button("Delete Type", variant="secondary")
insert_btn = gr.Button("Insert Label", variant="secondary")
audio_input = gr.Audio(label="Reference Audio", type="filepath")
ref_text_input = gr.Textbox(label="Reference Text", lines=2)
speech_type_rows.append(row)
speech_type_names.append(name_input)
speech_type_audios.append(audio_input)
speech_type_ref_texts.append(ref_text_input)
speech_type_delete_btns.append(delete_btn)
speech_type_insert_btns.append(insert_btn)
# Button to add speech type
add_speech_type_btn = gr.Button("Add Speech Type")
# Keep track of current number of speech types
speech_type_count = gr.State(value=1)
# Function to add a speech type
def add_speech_type_fn(speech_type_count):
if speech_type_count < max_speech_types:
speech_type_count += 1
# Prepare updates for the rows
row_updates = []
for i in range(1, max_speech_types):
if i < speech_type_count:
row_updates.append(gr.update(visible=True))
else:
row_updates.append(gr.update())
else:
# Optionally, show a warning
row_updates = [gr.update() for _ in range(1, max_speech_types)]
return [speech_type_count] + row_updates
add_speech_type_btn.click(
add_speech_type_fn, inputs=speech_type_count, outputs=[speech_type_count] + speech_type_rows
)
# Function to delete a speech type
def make_delete_speech_type_fn(index):
def delete_speech_type_fn(speech_type_count):
# Prepare updates
row_updates = []
for i in range(1, max_speech_types):
if i == index:
row_updates.append(gr.update(visible=False))
else:
row_updates.append(gr.update())
speech_type_count = max(1, speech_type_count)
return [speech_type_count] + row_updates
return delete_speech_type_fn
# Update delete button clicks
for i, delete_btn in enumerate(speech_type_delete_btns):
delete_fn = make_delete_speech_type_fn(i)
delete_btn.click(delete_fn, inputs=speech_type_count, outputs=[speech_type_count] + speech_type_rows)
# Text input for the prompt
gen_text_input_multistyle = gr.Textbox(
label="Text to Generate",
lines=10,
placeholder="Enter the script with speaker names (or emotion types) at the start of each block, e.g.:\n\n{Regular} Hello, I'd like to order a sandwich please.\n{Surprised} What do you mean you're out of bread?\n{Sad} I really wanted a sandwich though...\n{Angry} You know what, darn you and your little shop!\n{Whisper} I'll just go back home and cry now.\n{Shouting} Why me?!",
)
def make_insert_speech_type_fn(index):
def insert_speech_type_fn(current_text, speech_type_name):
current_text = current_text or ""
speech_type_name = speech_type_name or "None"
updated_text = current_text + f"{{{speech_type_name}}} "
return gr.update(value=updated_text)
return insert_speech_type_fn
for i, insert_btn in enumerate(speech_type_insert_btns):
insert_fn = make_insert_speech_type_fn(i)
insert_btn.click(
insert_fn,
inputs=[gen_text_input_multistyle, speech_type_names[i]],
outputs=gen_text_input_multistyle,
)
with gr.Accordion("Advanced Settings", open=False):
remove_silence_multistyle = gr.Checkbox(
label="Remove Silences",
value=True,
)
# Generate button
generate_multistyle_btn = gr.Button("Generate Multi-Style Speech", variant="primary")
# Output audio
audio_output_multistyle = gr.Audio(label="Synthesized Audio")
@gpu_decorator
def generate_multistyle_speech(
gen_text,
*args,
):
speech_type_names_list = args[:max_speech_types]
speech_type_audios_list = args[max_speech_types : 2 * max_speech_types]
speech_type_ref_texts_list = args[2 * max_speech_types : 3 * max_speech_types]
remove_silence = args[3 * max_speech_types]
# Collect the speech types and their audios into a dict
speech_types = OrderedDict()
ref_text_idx = 0
for name_input, audio_input, ref_text_input in zip(
speech_type_names_list, speech_type_audios_list, speech_type_ref_texts_list
):
if name_input and audio_input:
speech_types[name_input] = {"audio": audio_input, "ref_text": ref_text_input}
else:
speech_types[f"@{ref_text_idx}@"] = {"audio": "", "ref_text": ""}
ref_text_idx += 1
# Parse the gen_text into segments
segments = parse_speechtypes_text(gen_text)
# For each segment, generate speech
generated_audio_segments = []
current_style = "Regular"
for segment in segments:
style = segment["style"]
text = segment["text"]
if style in speech_types:
current_style = style
else:
# If style not available, default to Regular
current_style = "Regular"
ref_audio = speech_types[current_style]["audio"]
ref_text = speech_types[current_style].get("ref_text", "")
# Generate speech for this segment
audio_out, _, ref_text_out = infer(
ref_audio, ref_text, text, tts_model_choice, remove_silence, 0, show_info=print
) # show_info=print no pull to top when generating
sr, audio_data = audio_out
generated_audio_segments.append(audio_data)
speech_types[current_style]["ref_text"] = ref_text_out
# Concatenate all audio segments
if generated_audio_segments:
final_audio_data = np.concatenate(generated_audio_segments)
return [(sr, final_audio_data)] + [
gr.update(value=speech_types[style]["ref_text"]) for style in speech_types
]
else:
gr.Warning("No audio generated.")
return [None] + [gr.update(value=speech_types[style]["ref_text"]) for style in speech_types]
generate_multistyle_btn.click(
generate_multistyle_speech,
inputs=[
gen_text_input_multistyle,
]
+ speech_type_names
+ speech_type_audios
+ speech_type_ref_texts
+ [
remove_silence_multistyle,
],
outputs=[audio_output_multistyle] + speech_type_ref_texts,
)
# Validation function to disable Generate button if speech types are missing
def validate_speech_types(gen_text, regular_name, *args):
speech_type_names_list = args[:max_speech_types]
# Collect the speech types names
speech_types_available = set()
if regular_name:
speech_types_available.add(regular_name)
for name_input in speech_type_names_list:
if name_input:
speech_types_available.add(name_input)
# Parse the gen_text to get the speech types used
segments = parse_speechtypes_text(gen_text)
speech_types_in_text = set(segment["style"] for segment in segments)
# Check if all speech types in text are available
missing_speech_types = speech_types_in_text - speech_types_available
if missing_speech_types:
# Disable the generate button
return gr.update(interactive=False)
else:
# Enable the generate button
return gr.update(interactive=True)
gen_text_input_multistyle.change(
validate_speech_types,
inputs=[gen_text_input_multistyle, regular_name] + speech_type_names,
outputs=generate_multistyle_btn,
)
with gr.Blocks() as app_chat:
gr.Markdown(
"""
# Voice Chat
Have a conversation with an AI using your reference voice!
1. Upload a reference audio clip and optionally its transcript.
2. Load the chat model.
3. Record your message through your microphone.
4. The AI will respond using the reference voice.
"""
)
if not USING_SPACES:
load_chat_model_btn = gr.Button("Load Chat Model", variant="primary")
chat_interface_container = gr.Column(visible=False)
@gpu_decorator
def load_chat_model():
global chat_model_state, chat_tokenizer_state
if chat_model_state is None:
show_info = gr.Info
show_info("Loading chat model...")
model_name = "Qwen/Qwen2.5-3B-Instruct"
chat_model_state = AutoModelForCausalLM.from_pretrained(
model_name, torch_dtype="auto", device_map="auto"
)
chat_tokenizer_state = AutoTokenizer.from_pretrained(model_name)
show_info("Chat model loaded.")
return gr.update(visible=False), gr.update(visible=True)
load_chat_model_btn.click(load_chat_model, outputs=[load_chat_model_btn, chat_interface_container])
else:
chat_interface_container = gr.Column()
if chat_model_state is None:
model_name = "Qwen/Qwen2.5-3B-Instruct"
chat_model_state = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
chat_tokenizer_state = AutoTokenizer.from_pretrained(model_name)
with chat_interface_container:
with gr.Row():
with gr.Column():
ref_audio_chat = gr.Audio(label="Reference Audio", type="filepath")
with gr.Column():
with gr.Accordion("Advanced Settings", open=False):
remove_silence_chat = gr.Checkbox(
label="Remove Silences",
value=True,
)
ref_text_chat = gr.Textbox(
label="Reference Text",
info="Optional: Leave blank to auto-transcribe",
lines=2,
)
system_prompt_chat = gr.Textbox(
label="System Prompt",
value="You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud.",
lines=2,
)
chatbot_interface = gr.Chatbot(label="Conversation")
with gr.Row():
with gr.Column():
audio_input_chat = gr.Microphone(
label="Speak your message",
type="filepath",
)
audio_output_chat = gr.Audio(autoplay=True)
with gr.Column():
text_input_chat = gr.Textbox(
label="Type your message",
lines=1,
)
send_btn_chat = gr.Button("Send Message")
clear_btn_chat = gr.Button("Clear Conversation")
conversation_state = gr.State(
value=[
{
"role": "system",
"content": "You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud.",
}
]
)
# Modify process_audio_input to use model and tokenizer from state
@gpu_decorator
def process_audio_input(audio_path, text, history, conv_state):
"""Handle audio or text input from user"""
if not audio_path and not text.strip():
return history, conv_state, ""
if audio_path:
text = preprocess_ref_audio_text(audio_path, text)[1]
if not text.strip():
return history, conv_state, ""
conv_state.append({"role": "user", "content": text})
history.append((text, None))
response = generate_response(conv_state, chat_model_state, chat_tokenizer_state)
conv_state.append({"role": "assistant", "content": response})
history[-1] = (text, response)
return history, conv_state, ""
@gpu_decorator
def generate_audio_response(history, ref_audio, ref_text, remove_silence):
"""Generate TTS audio for AI response"""
if not history or not ref_audio:
return None
last_user_message, last_ai_response = history[-1]
if not last_ai_response:
return None
audio_result, _, ref_text_out = infer(
ref_audio,
ref_text,
last_ai_response,
tts_model_choice,
remove_silence,
cross_fade_duration=0.15,
speed=1.0,
show_info=print, # show_info=print no pull to top when generating
)
return audio_result, gr.update(value=ref_text_out)
def clear_conversation():
"""Reset the conversation"""
return [], [
{
"role": "system",
"content": "You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud.",
}
]
def update_system_prompt(new_prompt):
"""Update the system prompt and reset the conversation"""
new_conv_state = [{"role": "system", "content": new_prompt}]
return [], new_conv_state
# Handle audio input
audio_input_chat.stop_recording(
process_audio_input,
inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state],
outputs=[chatbot_interface, conversation_state],
).then(
generate_audio_response,
inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, remove_silence_chat],
outputs=[audio_output_chat, ref_text_chat],
).then(
lambda: None,
None,
audio_input_chat,
)
# Handle text input
text_input_chat.submit(
process_audio_input,
inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state],
outputs=[chatbot_interface, conversation_state],
).then(
generate_audio_response,
inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, remove_silence_chat],
outputs=[audio_output_chat, ref_text_chat],
).then(
lambda: None,
None,
text_input_chat,
)
# Handle send button
send_btn_chat.click(
process_audio_input,
inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state],
outputs=[chatbot_interface, conversation_state],
).then(
generate_audio_response,
inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, remove_silence_chat],
outputs=[audio_output_chat, ref_text_chat],
).then(
lambda: None,
None,
text_input_chat,
)
# Handle clear button
clear_btn_chat.click(
clear_conversation,
outputs=[chatbot_interface, conversation_state],
)
# Handle system prompt change and reset conversation
system_prompt_chat.change(
update_system_prompt,
inputs=system_prompt_chat,
outputs=[chatbot_interface, conversation_state],
)
with gr.Blocks() as app:
gr.Markdown(
"""
# E2/F5 TTS
This is a local web UI for F5 TTS with advanced batch processing support. This app supports the following TTS models:
* [F5-TTS](https://arxiv.org/abs/2410.06885) (A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching)
* [E2 TTS](https://arxiv.org/abs/2406.18009) (Embarrassingly Easy Fully Non-Autoregressive Zero-Shot TTS)
The checkpoints currently support English and Chinese.
If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s with ✂ in the bottom right corner (otherwise might have non-optimal auto-trimmed result).
**NOTE: Reference text will be automatically transcribed with Whisper if not provided. For best results, keep your reference clips short (<15s). Ensure the audio is fully uploaded before generating.**
"""
)
last_used_custom = files("f5_tts").joinpath("infer/.cache/last_used_custom.txt")
def load_last_used_custom():
try:
with open(last_used_custom, "r") as f:
return f.read().split(",")
except FileNotFoundError:
last_used_custom.parent.mkdir(parents=True, exist_ok=True)
return [
"hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors",
"hf://SWivid/F5-TTS/F5TTS_Base/vocab.txt",
]
def switch_tts_model(new_choice):
global tts_model_choice
if new_choice == "Custom": # override in case webpage is refreshed
custom_ckpt_path, custom_vocab_path = load_last_used_custom()
tts_model_choice = ["Custom", custom_ckpt_path, custom_vocab_path]
return gr.update(visible=True, value=custom_ckpt_path), gr.update(visible=True, value=custom_vocab_path)
else:
tts_model_choice = new_choice
return gr.update(visible=False), gr.update(visible=False)
def set_custom_model(custom_ckpt_path, custom_vocab_path):
global tts_model_choice
tts_model_choice = ["Custom", custom_ckpt_path, custom_vocab_path]
with open(last_used_custom, "w") as f:
f.write(f"{custom_ckpt_path},{custom_vocab_path}")
with gr.Row():
if not USING_SPACES:
choose_tts_model = gr.Radio(
choices=[DEFAULT_TTS_MODEL, "E2-TTS", "Custom"], label="Choose TTS Model", value=DEFAULT_TTS_MODEL
)
else:
choose_tts_model = gr.Radio(
choices=[DEFAULT_TTS_MODEL, "E2-TTS"], label="Choose TTS Model", value=DEFAULT_TTS_MODEL
)
custom_ckpt_path = gr.Dropdown(
choices=["hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors"],
value=load_last_used_custom()[0],
allow_custom_value=True,
label="MODEL CKPT: local_path | hf://user_id/repo_id/model_ckpt",
visible=False,
)
custom_vocab_path = gr.Dropdown(
choices=["hf://SWivid/F5-TTS/F5TTS_Base/vocab.txt"],
value=load_last_used_custom()[1],
allow_custom_value=True,
label="VOCAB FILE: local_path | hf://user_id/repo_id/vocab_file",
visible=False,
)
choose_tts_model.change(
switch_tts_model,
inputs=[choose_tts_model],
outputs=[custom_ckpt_path, custom_vocab_path],
show_progress="hidden",
)
custom_ckpt_path.change(
set_custom_model,
inputs=[custom_ckpt_path, custom_vocab_path],
show_progress="hidden",
)
custom_vocab_path.change(
set_custom_model,
inputs=[custom_ckpt_path, custom_vocab_path],
show_progress="hidden",
)
gr.TabbedInterface(
[app_tts, app_multistyle, app_chat, app_credits],
["Basic-TTS", "Multi-Speech", "Voice-Chat", "Credits"],
)
@click.command()
@click.option("--port", "-p", default=None, type=int, help="Port to run the app on")
@click.option("--host", "-H", default=None, help="Host to run the app on")
@click.option(
"--share",
"-s",
default=False,
is_flag=True,
help="Share the app via Gradio share link",
)
@click.option("--api", "-a", default=True, is_flag=True, help="Allow API access")
@click.option(
"--root_path",
"-r",
default=None,
type=str,
help='The root path (or "mount point") of the application, if it\'s not served from the root ("/") of the domain. Often used when the application is behind a reverse proxy that forwards requests to the application, e.g. set "/myapp" or full URL for application served at "https://example.com/myapp".',
)
def main(port, host, share, api, root_path):
global app
print("Starting app...")
app.queue(api_open=api).launch(server_name=host, server_port=port, share=share, show_api=api, root_path=root_path)
if __name__ == "__main__":
if not USING_SPACES:
main()
else:
app.queue().launch()