-
Notifications
You must be signed in to change notification settings - Fork 0
/
static-fun.ML
241 lines (201 loc) · 6.59 KB
/
static-fun.ML
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
(*
* Copyright 2014, NICTA
*
* This software may be distributed and modified according to the terms of
* the BSD 2-Clause license. Note that NO WARRANTY is provided.
* See "LICENSE_BSD2.txt" for details.
*
* @TAG(NICTA_BSD)
*)
signature ISAR_KEY_VALUE =
sig
val name_ty : typ
val intname_to_term : int -> term
val ord_ty : typ
val ord_term : term
val ordsimps : simpset
end;
signature STATIC_FUN =
sig
val define_tree_and_thms : string -> ((term option * thm) * string) list
-> local_theory -> (bstring * thm list) list * local_theory
val prove_tree_lemmata : Proof.context -> thm -> thm list
(* Allows testing *)
val add_defs : (string * term) list -> local_theory -> thm list * local_theory
val intname_to_term : int -> term
end
functor SFun (KeyVal : ISAR_KEY_VALUE) :> STATIC_FUN =
struct
val alpha = TFree ("'a", ["HOL.type"])
val beta = TFree ("'b", ["HOL.type"])
val gamma = TFree ("'c", ["Orderings.linorder"])
val intname_to_term = KeyVal.intname_to_term
(* Actually build the tree -- theta (n lg(n)) *)
fun build_tree' mk_node mk_leaf xs n = if n = 0
then mk_leaf
else (let
val n' = n div 2
val xs' = List.drop (xs, n' + 1)
val (a, b) = nth xs n'
in (* The second term accounts for floor in div *)
mk_node a b (build_tree' mk_node mk_leaf xs n')
(build_tree' mk_node mk_leaf xs' (n - n' - 1))
end)
fun build_tree xs =
let
val val_ty = type_of (snd (hd xs)) (* PARTIAL!! *)
val ty_substs =
[(alpha, KeyVal.name_ty), (beta, val_ty),
(gamma, KeyVal.ord_ty)
]
val subst = subst_atomic_types ty_substs
val node = subst @{term "StaticFun.Node"}
val mk_leaf = subst @{term "StaticFun.Leaf"}
val lookup_tree = subst @{term "StaticFun.lookup_tree"}
fun mk_node a b l r = node $ a $ b $ l $ r
in
lookup_tree $ (build_tree' mk_node mk_leaf xs (length xs)) $ KeyVal.ord_term
end
fun add_defs defs lthy : thm list * local_theory = let
fun mk1 ((name, rhs), (xs, lthy)) = let
val b = Binding.make(name, Position.none)
val ((_, (_, d)), lthy') =
Local_Theory.define ((b, NoSyn), ((Thm.def_binding b, []), rhs)) lthy
in
(d :: xs, lthy')
end
val (xs, lthy') = List.foldl mk1 ([], lthy) defs
in
(rev xs, lthy')
end
fun add_def def = add_defs [def] #>> hd
fun define_tree name xs thy : thm * local_theory =
let
val tree = build_tree xs
in
add_def (name, tree) thy
end
val mydk = nth @{thms tree_gives_valsD} 0
val mydl = nth @{thms tree_gives_valsD} 1
val mydr = nth @{thms tree_gives_valsD} 2
val mycg = @{thm tree_gives_vals_setonly_cong}
val mysets = @{thms tree_vals_set_simps}
val simpset =
Simplifier.put_simpset KeyVal.ordsimps @{context}
|> (fn ctxt => ctxt addsimps mysets)
|> Simplifier.add_cong mycg
|> simpset_of
fun make_tree_lemma _ [] = []
| make_tree_lemma ctxt thms =
let
val mapsimp = map (simplify (put_simpset simpset ctxt))
val left = mapsimp (thms RL [mydl])
val right = mapsimp (thms RL [mydr])
val rule = mapsimp (thms RL [mydk])
in
(* Add rule to theory *)
make_tree_lemma ctxt left @ rule @ make_tree_lemma ctxt right
end
fun prove_tree_lemmata ctxt tree_def
= make_tree_lemma ctxt [tree_def RS @{thm tree_gives_valsI}]
val zip = curry (op ~~)
fun make_lemmas tree_def defs (ctxt : Proof.context) =
let
in
prove_tree_lemmata ctxt tree_def
|> zip defs
|> map (fn (d, t) => Local_Defs.fold ctxt [d] t)
end
fun add_thms lthy names thms = let
fun mk1 (n, t) = ((Binding.make(n,Position.none), []), [([t],[])])
in
Local_Theory.notes (ListPair.map mk1 (names,thms)) lthy
end
fun map_option f [] = []
| map_option f (x :: xs) =
let val rest = map_option f xs
in (case f x of
NONE => rest
| SOME x' => x' :: rest)
end
fun define_tree_and_thms name defs thy = let
fun is_Some_filter (_, ((NONE, _), _)) = NONE
| is_Some_filter (n, ((SOME x, y), z)) = SOME (n, x, y, z)
val defs' =
map_option is_Some_filter
(List.tabulate (length defs,
intname_to_term o (fn n => n + 1)) ~~
defs)
val vals = map (fn (n, v, _, _) => (n, v)) defs'
val proc_defs = map #3 defs'
val names = map #4 defs'
val (def, thy') = define_tree name vals thy
val lemmas = make_lemmas def proc_defs thy'
in
add_thms thy' names lemmas
end
end (* functor *)
structure StaticFun = SFun
(struct
val name_ty = @{typ "int"}
val intname_to_term = IsabelleTermsTypes.mk_int_numeral
val ord_ty = @{typ "int"}
val ord_term = @{term "id :: int => int"}
val ordsimps = simpset_of (
put_simpset HOL_basic_ss @{context} addsimps @{thms int_simpset})
end);
structure TestStaticFun =
struct
open StaticFun;
fun define_test_tree name sz thy =
let
fun tab f = List.tabulate (sz, f)
fun mk_proc n = ("name" ^ Int.toString n ^ "_'proc", intname_to_term n)
val gen_entry = SOME o StaticFun.intname_to_term
fun gen_names n = "name" ^ Int.toString n ^ "_impl"
val (proc_defs, thy') = add_defs (tab mk_proc) thy
in
define_tree_and_thms name (tab gen_entry ~~ proc_defs ~~ tab gen_names) thy'
end
fun define_test_tree2 name sz thy =
let
fun tab f = List.tabulate (sz, f)
fun mk_proc n = ("name" ^ Int.toString n ^ "_'proc", intname_to_term n)
val (proc_defs, thy') = add_defs (tab mk_proc) thy
in
([], thy')
end
local structure P = Parse and K = Keyword in
val treeP =
Outer_Syntax.command
@{command_keyword "test_tree"}
"Create an example tree with associated lemmas"
(P.name -- P.nat
>> (fn (name, sz) => Toplevel.local_theory NONE
(fn thy => define_test_tree name sz thy |> #2 )))
val treeP =
Outer_Syntax.command
@{command_keyword "test_tree2"}
"Create an example tree with associated lemmas"
(P.name -- P.nat
>> (fn (name, sz) => Toplevel.local_theory NONE
(fn thy => define_test_tree2 name sz thy |> #2 )))
end
end
(*
structure StaticFunString = SFun
(struct
type N = string
type V = int
val name_ty = @{typ "string"}
val name_to_term = TermsTypes.mk_string
val int_name = fn x => ("keyname" ^ Int.toString x)
val val_ty = @{typ "nat"}
val val_to_term = TermsTypes.mk_nat_numeral
val int_val = fn x => x
val ord_ty = @{typ "StringOrd.anotherBL"}w
val ord_term = @{term string_to_anbl}
val compare = String.compare
val ordsimps = HOL_basic_ss addsimps @{thms string_ord_simps}
end);
*)