-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSep_Tactic_Examples.thy
300 lines (234 loc) · 9.79 KB
/
Sep_Tactic_Examples.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
(*
* Copyright 2014, NICTA
*
* This software may be distributed and modified according to the terms of
* the GNU General Public License version 2. Note that NO WARRANTY is provided.
* See "LICENSE_GPLv2.txt" for details.
*
* @TAG(NICTA_GPL)
*)
theory Sep_Tactic_Examples
imports
"../sep-capDL/Sep_Tactic_Helper"
KHeap_DP
begin
(* Thesis : Automated Tactics for Seperation Logic *)
(* seperation logic *)
(* after we show that addition and disjointedness on our heap obeys certain laws, we get a seperation algebra *)
(* connectives *)
term "P \<and>* Q"
term "P \<longrightarrow>* Q"
lemma frame_rule:
"\<And>R. \<lbrace>P\<rbrace> f \<lbrace>\<lambda>_. Q\<rbrace> \<Longrightarrow> \<lbrace>P \<and>* R\<rbrace> f \<lbrace>\<lambda>_. Q \<and>* R\<rbrace>"
oops
thm swap_cap_wp[no_vars]
lemma
"\<lbrace><dest \<mapsto>c - \<and>* src \<mapsto>c cap \<and>* R>\<rbrace>
move_cap cap' src dest
\<lbrace>\<lambda>_. <dest \<mapsto>c cap' \<and>* src \<mapsto>c NullCap \<and>* R>\<rbrace>"
apply (simp add: move_cap_def)
apply (wp swap_parents_wp set_cap_wp) (* set_cap doesn't apply *)
thm set_cap_wp[no_vars]
apply (rule hoare_strengthen_post)
apply (wp set_cap_wp)
apply (clarsimp simp: sep_conj_ac )
oops
(* tactics we had pre-thesis *)
lemma "(A \<and>* B \<and>* C \<and>* D) s \<Longrightarrow> (A \<and>* B \<and>* C \<and>* D) s"
apply (sep_select 4)
apply (sep_select_asm 3)
apply (sep_select 2)
apply (sep_cancel)
apply (sep_cancel)
apply (sep_cancel)
done
(* forward reasoning *)
lemma example_drule:
"(ptr \<mapsto>o obj) s
\<Longrightarrow> (ptr \<mapsto>S obj \<and>* ptr \<mapsto>f obj) s"
by (metis sep_conj_commute sep_map_o_decomp)
lemma sep_drule_example:
"(ptr \<mapsto>o obj \<and>* A \<and>* B ) s
\<Longrightarrow> (A \<and>* B \<and>* ptr \<mapsto>f obj \<and>* ptr \<mapsto>S obj) s"
apply (sep_drule example_drule)
apply (sep_solve)
done
(* backwards reasoning *)
lemma example_rule:
"(ptr \<mapsto>f obj \<and>* ptr \<mapsto>S obj) s
\<Longrightarrow> (ptr \<mapsto>o obj) s"
by (metis sep_map_o_decomp)
lemma sep_rule_example: "(ptr \<mapsto>f obj \<and>* A \<and>* B \<and>* ptr \<mapsto>S obj ) s \<Longrightarrow> (ptr \<mapsto>o obj \<and>* A \<and>* B) s"
apply (sep_rule example_rule)
apply (sep_solve)
done
(* the state of proving before new stuff *)
lemma swap_cap_wp_old:
"\<lbrace><dest \<mapsto>c cap \<and>* src \<mapsto>c cap' \<and>* R>\<rbrace>
swap_cap cap' src cap dest
\<lbrace>\<lambda>_.<dest \<mapsto>c cap' \<and>* src \<mapsto>c cap \<and>* R>\<rbrace>"
apply (clarsimp simp add: swap_cap_def)
apply (wp swap_parents_wp set_cap_wp)
apply (rule hoare_chain)
apply (wp set_cap_wp)
apply (sep_solve)+
done
lemma move_cap_wp_old:
"\<lbrace><dest \<mapsto>c - \<and>* src \<mapsto>c cap \<and>* R>\<rbrace>
move_cap cap' src dest
\<lbrace>\<lambda>_. <dest \<mapsto>c cap' \<and>* src \<mapsto>c NullCap \<and>* R>\<rbrace>"
including no_pre
apply (simp add: move_cap_def)
apply (wp swap_parents_wp)
apply (rule hoare_strengthen_post)
apply (wp set_cap_wp)
apply (sep_select 2)
apply (sep_solve)
apply (rule hoare_chain)
apply (wp insert_cap_orphan_wp)
apply (sep_solve)
apply (sep_solve)
done
lemma invoke_cnode_rotate2_wp_old:
"(dest) \<noteq> (rnd) \<Longrightarrow>
\<lbrace><dest \<mapsto>c cap1 \<and>* src \<mapsto>c cap2 \<and>*
rnd \<mapsto>c - \<and>* R>\<rbrace>
invoke_cnode (RotateCall cap1 cap2 dest src rnd)
\<lbrace>\<lambda>_. <dest \<mapsto>c NullCap \<and>* src \<mapsto>c cap1 \<and>*
rnd \<mapsto>c cap2 \<and>* R>\<rbrace>"
including no_pre
apply (clarsimp simp: invoke_cnode_def)
apply (wp)
apply (rule hoare_strengthen_post)
apply (rule move_cap_wp)
apply (sep_solve )
apply (rule hoare_chain)
apply (rule move_cap_wp)
apply (sep_select_asm 2, sep_select_asm 3)
apply (sep_solve)
apply (sep_solve)
done
(* new sep_select/asm *)
lemma "(A \<and>* B \<and>* C \<and>* D) s \<Longrightarrow> (A \<and>* B \<and>* C \<and>* D) s"
apply (sep_select 4 3 2 1)
apply (sep_select_asm 4 3 2 1)
apply (sep_select_asm 2 4)
oops
(* sep_select_pre/post *)
lemma "\<lbrace>A \<and>* B \<and>* C \<and>* D\<rbrace> f \<lbrace>\<lambda>_. A \<and>* B \<and>* C \<and>* D\<rbrace>"
apply (sep_select_pre 4 1 2 3)
apply (sep_select_post 3 4 2 1)
apply (sep_select_post 3 4)
oops
(* can be made to work for arbitrary monads *)
lemma "\<lbrace>A \<and>* B \<and>* C \<and>* D\<rbrace> f \<lbrace>\<lambda>_. A \<and>* B \<and>* C \<and>* D\<rbrace>, \<lbrace>E\<rbrace>"
apply (sep_select_pre 4 1 2 3)
apply (sep_select_post 3 4 2 1)
apply (sep_select_post 3 4)
oops
lemma "\<lbrace>A \<and>* B \<and>* C \<and>* D\<rbrace> f \<lbrace>\<lambda>_. A \<and>* B \<and>* C \<and>* D\<rbrace>, -"
apply (sep_select_pre 4 1 2 3)
apply (sep_select_post 3 4 2 1)
apply (sep_select_post 3 4)
oops
lemma "(P \<and>* (P \<longrightarrow>* Q)) s \<Longrightarrow> Q s"
apply (sep_mp, assumption )
done
lemma "P s \<Longrightarrow> (Q \<longrightarrow>* (P \<and>* Q)) s"
apply (erule sep_curry[rotated])
apply (assumption)
done
thm sep_mp[no_vars] sep_curry[rotated, no_vars]
(* wp tactic testing *)
(* sep_wand approach *)
lemma move_cap_wp2:
"\<lbrace><dest \<mapsto>c - \<and>* src \<mapsto>c cap \<and>* R>\<rbrace>
move_cap cap' src dest
\<lbrace>\<lambda>_. <dest \<mapsto>c cap' \<and>* src \<mapsto>c NullCap \<and>* R>\<rbrace>"
apply (simp add: move_cap_def)
apply (sep_wp set_cap_wp swap_parents_wp insert_cap_orphan_wp)+
apply (sep_solve)
done
lemma swap_cap_wp2:
"\<lbrace><dest \<mapsto>c cap \<and>* src \<mapsto>c cap' \<and>* R>\<rbrace>
swap_cap cap' src cap dest
\<lbrace>\<lambda>_.<dest \<mapsto>c cap' \<and>* src \<mapsto>c cap \<and>* R>\<rbrace>"
apply (clarsimp simp: swap_cap_def)
apply (sep_wp swap_parents_wp set_cap_wp)+
apply (sep_solve)
done
lemma invoke_cnode_rotate2_wp:
"(dest) \<noteq> (rnd) \<Longrightarrow>
\<lbrace><dest \<mapsto>c cap1 \<and>* src \<mapsto>c cap2 \<and>*
rnd \<mapsto>c - \<and>* R>\<rbrace>
invoke_cnode (RotateCall cap1 cap2 dest src rnd)
\<lbrace>\<lambda>_. <dest \<mapsto>c NullCap \<and>* src \<mapsto>c cap1 \<and>*
rnd \<mapsto>c cap2 \<and>* R>\<rbrace>"
apply (clarsimp simp: invoke_cnode_def)
apply (sep_wp move_cap_wp)+
apply (sep_solve)
done
(* sep_drule/rule *)
lemma sep_rule_example2:
"\<lbrakk>(ptr \<mapsto>o obj) s; finite (dom (object_slots obj))\<rbrakk> \<Longrightarrow>
(ptr \<mapsto>E obj \<and>* ptr \<mapsto>f obj \<and>* (\<And>* slot\<in>dom (object_slots obj). (ptr, slot) \<mapsto>s obj)) s"
apply (subst (asm) sep_map_o_decomp)
apply (subst (asm) sep_map_S_decomp, simp+)
apply sep_solve
done
lemma sep_drule_example2:
"\<lbrakk>(ptr \<mapsto>f obj \<and>* (\<And>* slot\<in>dom (object_slots obj). (ptr, slot) \<mapsto>s obj) \<and>* ptr \<mapsto>E obj) s;
finite (dom (object_slots obj))\<rbrakk>
\<Longrightarrow>
(ptr \<mapsto>o obj) s"
by (metis sep_map_S_decomp sep_map_o_decomp)
(* sep_curry *)
lemma sep_drule_example_lemma:
"\<lbrakk>(H \<and>* Z \<and>* J \<and>* L \<and>* Y \<and>* ptr \<mapsto>f obj \<and>* A \<and>* B \<and>*
(\<And>* slot\<in>dom (object_slots obj). (ptr, slot) \<mapsto>s obj) \<and>* D \<and>* G \<and>* E \<and>* F \<and>* ptr \<mapsto>E obj ) s;
finite (dom (object_slots obj))\<rbrakk>
\<Longrightarrow>
(D \<and>* G \<and>* E \<and>* F \<and>* ptr \<mapsto>o obj \<and>* H \<and>* Z \<and>* J \<and>* L \<and>* Y \<and>* A \<and>* B) s"
apply (sep_drule sep_drule_example2)
apply assumption
apply sep_solve
done
(* sep_back *)
lemma sep_rule_example_lemma:
"\<lbrakk>(H \<and>* Z \<and>* J \<and>* L \<and>* Y \<and>* ptr \<mapsto>o obj \<and>* A \<and>* B \<and>* D \<and>* G \<and>* E \<and>* F ) s;
finite (dom (object_slots obj))\<rbrakk> \<Longrightarrow>
(D \<and>* G \<and>* E \<and>* F \<and>* ptr \<mapsto>f obj \<and>* H \<and>* Z \<and>* J \<and>* L \<and>* Y \<and>* ptr \<mapsto>E obj \<and>*
A \<and>* B \<and>* (\<And>* slot\<in>dom (object_slots obj). (ptr, slot) \<mapsto>s obj)) s"
apply (sep_rule sep_rule_example2)
apply sep_solve
apply assumption
done
(* works even with multiple conjuncts in assumptions and conclusions *)
lemma sep_rule_double_conjunct_example:
"\<lbrakk>((obj_id, slot) \<mapsto>c cap \<and>* obj_id \<mapsto>f obj) s;
object_slots obj slot = Some cap\<rbrakk>
\<Longrightarrow> ((obj_id, slot) \<mapsto>s obj \<and>* obj_id \<mapsto>f obj) s"
apply (sep_drule sep_map_s_sep_map_c)
apply assumption
apply (sep_cancel)+
done
lemma sep_rule_double_conjunct_lemma:
"\<lbrakk>(H \<and>* Z \<and>* J \<and>* L \<and>* Y \<and>* obj_id \<mapsto>f obj \<and>* A \<and>* B \<and>* D \<and>* G \<and>* E \<and>* F \<and>* (obj_id, slot) \<mapsto>c cap ) s;
object_slots obj slot = Some cap\<rbrakk> \<Longrightarrow>
(D \<and>* G \<and>* E \<and>* F \<and>*(obj_id, slot) \<mapsto>s obj \<and>* H \<and>* Z \<and>* J \<and>* L \<and>* Y \<and>* A \<and>* B \<and>* obj_id \<mapsto>f obj) s"
apply (sep_rule sep_rule_double_conjunct_example)
apply sep_solve
apply assumption
done
(* side-conditions*)
lemma sep_drule_side_condition_lemma:
"\<lbrakk>(H \<and>* Z \<and>* J \<and>* L \<and>* Y \<and>* obj_id \<mapsto>f obj \<and>* A \<and>* B \<and>* D \<and>* G \<and>* E \<and>* F \<and>* (obj_id, slot) \<mapsto>c cap ) s;
object_slots obj slot = Some cap\<rbrakk> \<Longrightarrow>
(D \<and>* G \<and>* E \<and>* F \<and>*(obj_id, slot) \<mapsto>s obj \<and>* H \<and>* Z \<and>* J \<and>* L \<and>* Y \<and>* A \<and>* B \<and>* obj_id \<mapsto>f obj) s"
apply (sep_drule sep_rule_double_conjunct_example, assumption)
apply (sep_solve)
done
schematic_goal "(P \<and>* ?A) s \<Longrightarrow> (A \<and>* B \<and>* P) s"
apply (sep_solve)
done
end