-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSubMonadLib.thy
558 lines (497 loc) · 22.3 KB
/
SubMonadLib.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
(*
* Copyright 2014, NICTA
*
* This software may be distributed and modified according to the terms of
* the BSD 2-Clause license. Note that NO WARRANTY is provided.
* See "LICENSE_BSD2.txt" for details.
*
* @TAG(NICTA_BSD)
*)
theory SubMonadLib
imports
EmptyFailLib
Corres_UL
begin
locale submonad_args =
fixes fetch :: "'a \<Rightarrow> 'b"
fixes replace :: "'b \<Rightarrow> 'a \<Rightarrow> 'a"
fixes guard :: "'a \<Rightarrow> bool"
assumes args:
"\<forall>x s. guard s \<longrightarrow> fetch (replace x s) = x"
"\<forall>x y s. replace x (replace y s) = replace x s"
"\<forall>s. replace (fetch s) s = s"
assumes replace_preserves_guard:
"\<And>s x. guard (replace x s) = guard s"
definition
submonad_fn :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow>
('b, 'c) nondet_monad \<Rightarrow> ('a, 'c) nondet_monad"
where
"submonad_fn fetch replace guard m \<equiv> do
stateAssert guard [];
substate \<leftarrow> gets fetch;
(rv, substate') \<leftarrow> select_f (m substate);
modify (replace substate');
return rv
od"
locale submonad = submonad_args +
fixes fn :: "('b, 'c) nondet_monad \<Rightarrow> ('a, 'c) nondet_monad"
assumes fn_is_sm: "fn = submonad_fn fetch replace guard"
lemma (in submonad_args) argsD1:
"\<And>x s. guard s \<Longrightarrow> fetch (replace x s) = x"
by (simp add: args)
lemma (in submonad) guarded_sm:
"\<And>s. guard s \<Longrightarrow>
fn m s = (do
substate \<leftarrow> gets fetch;
(rv, substate') \<leftarrow> select_f (m substate);
modify (replace substate');
return rv
od) s"
unfolding fn_is_sm submonad_fn_def
by (simp add: stateAssert_def get_def assert_def bind_def return_def)
lemma modify_modify:
"modify fn1 >>= (\<lambda>x. modify fn2) = modify (fn2 \<circ> fn1)"
by (simp add: bind_def modify_def get_def put_def)
lemma select_f_walk:
assumes m1: "empty_fail m1"
assumes S: "fst S = {} \<Longrightarrow> snd S"
shows "(do a \<leftarrow> m1; b \<leftarrow> select_f S; m2 a b od) = (do b \<leftarrow> select_f S; a \<leftarrow> m1; m2 a b od)"
apply (rule ext)
apply (rule prod.expand)
apply (rule conjI)
apply (simp add: select_f_def bind_def split_def)
apply fastforce
apply (simp add: select_f_def bind_def split_def)
apply (case_tac "fst S = {}")
apply clarsimp
apply (case_tac "fst (m1 x) = {}")
apply (simp add: empty_failD [OF m1] S)
apply (frule S)
apply force
apply safe
apply clarsimp
apply force
apply force
apply clarsimp
apply force
apply clarsimp
apply (case_tac "fst (m1 x) = {}", simp add: empty_failD [OF m1])
apply force
done
lemma stateAssert_stateAssert:
"(stateAssert g [] >>= (\<lambda>u. stateAssert g' [])) = stateAssert (g and g') []"
by (simp add: ext stateAssert_def bind_def get_def assert_def fail_def return_def)
lemma modify_stateAssert:
"\<lbrakk> \<And>s x. g (r x s) = g s \<rbrakk> \<Longrightarrow>
(modify (r x) >>= (\<lambda>u. stateAssert g []))
= (stateAssert g [] >>= (\<lambda>u. modify (r x)))"
by (simp add: ext stateAssert_def bind_def get_def assert_def fail_def
return_def modify_def put_def)
lemma gets_stateAssert:
"(gets f >>= (\<lambda>x. stateAssert g' [] >>= (\<lambda>u. m x)))
= (stateAssert g' [] >>= (\<lambda>u. gets f >>= (\<lambda>x. m x)))"
by (simp add: ext stateAssert_def bind_def gets_def get_def
assert_def fail_def return_def)
lemma select_f_stateAssert:
"empty_fail m \<Longrightarrow>
(select_f (m a) >>= (\<lambda>x. stateAssert g [] >>= (\<lambda>u. n x))) =
(stateAssert g [] >>= (\<lambda>u. select_f (m a) >>= (\<lambda>x. n x)))"
apply (rule ext)
apply (clarsimp simp: stateAssert_def bind_def select_f_def get_def
assert_def return_def fail_def split_def image_image)
apply (simp only: image_def)
apply (clarsimp simp: stateAssert_def bind_def select_f_def get_def
assert_def return_def fail_def split_def image_image)
apply (simp only: image_def mem_simps empty_fail_def simp_thms)
apply fastforce
done
lemma bind_select_f_bind':
shows "(select_f (m s) >>= (\<lambda>x. select_f (split n x))) = (select_f ((m >>= n) s))"
apply (rule ext)
apply (force simp: select_f_def bind_def split_def)
done
lemma bind_select_f_bind:
"(select_f (m1 s) >>= (\<lambda>x. select_f (m2 (fst x) (snd x)))) = (select_f ((m1 >>= m2) s))"
by (insert bind_select_f_bind' [where m=m1 and n=m2 and s=s],
simp add: split_def)
lemma select_from_gets: "select_f (gets f s) = return (f s, s)"
apply (rule ext)
apply (simp add: select_f_def return_def simpler_gets_def)
done
lemma select_from_gets':
"(select_f \<circ> gets f) = (\<lambda>s. return (f s, s))"
apply (rule ext)
apply (simp add: o_def select_from_gets)
done
lemma bind_subst_lift:
"(f >>= g) = h \<Longrightarrow> (do x \<leftarrow> f; y \<leftarrow> g x; j y od) = (h >>= j)"
by (simp add: bind_assoc[symmetric])
lemma modify_gets:
"\<lbrakk> \<And>x s. g (r x s) = g s; \<And>x s. g s \<longrightarrow> f (r x s) = x \<rbrakk>
\<Longrightarrow> (modify (r x) >>= (\<lambda>u. stateAssert g [] >>= (\<lambda>u'. gets f)))
= (stateAssert g [] >>= (\<lambda>u'. modify (r x) >>= (\<lambda>u. return x)))"
by (simp add: ext stateAssert_def assert_def modify_def bind_def get_def
put_def gets_def return_def fail_def)
lemma (in submonad_args) gets_modify:
"\<And>s. guard s \<Longrightarrow>
(do x \<leftarrow> gets fetch; u \<leftarrow> modify (replace x); f x od) s = ((gets fetch) >>= f) s"
by (clarsimp simp: modify_def gets_def return_def bind_def
put_def args get_def
split: option.split)
lemma submonad_bind:
"\<lbrakk> submonad f r g m; submonad f r g m'; submonad f r g m'';
empty_fail a; \<And>x. empty_fail (b x) \<rbrakk> \<Longrightarrow>
m (a >>= b) = (m' a) >>= (\<lambda>rv. m'' (b rv))"
apply (subst submonad.fn_is_sm, assumption)+
apply (clarsimp simp: submonad_def bind_assoc split_def submonad_fn_def)
apply (subst bind_subst_lift [OF modify_gets, unfolded bind_assoc])
apply (simp add: submonad_args.args submonad_args.replace_preserves_guard)+
apply (subst select_f_stateAssert, assumption)
apply (subst gets_stateAssert)
apply (subst bind_subst_lift [OF stateAssert_stateAssert])
apply (clarsimp simp: pred_conj_def)
apply (clarsimp simp: bind_assoc split_def select_f_walk
empty_fail_stateAssert empty_failD
bind_subst_lift[OF modify_modify] submonad_args.args o_def
bind_subst_lift[OF bind_select_f_bind])
done
lemma (in submonad) guard_preserved:
"\<And>s s'. \<lbrakk> (rv, s') \<in> fst (fn m s) \<rbrakk> \<Longrightarrow> guard s'"
unfolding fn_is_sm submonad_fn_def
by (clarsimp simp: stateAssert_def gets_def get_def bind_def modify_def put_def
return_def select_f_def replace_preserves_guard in_monad)
lemma fst_stateAssertD:
"\<And>s s' v. (v, s') \<in> fst (stateAssert g [] s) \<Longrightarrow> s' = s \<and> g s"
by (clarsimp simp: stateAssert_def in_monad)
lemma(in submonad) guarded_gets:
"\<And>s. guard s \<Longrightarrow> fn (gets f) s = gets (f \<circ> fetch) s"
apply (simp add: guarded_sm select_from_gets gets_modify)
apply (simp add: gets_def)
done
lemma (in submonad) guarded_return:
"\<And>s. guard s \<Longrightarrow> fn (return x) s = return x s"
using args guarded_gets
by (fastforce simp: gets_def bind_def get_def)
lemma (in submonad_args) submonad_fn_gets:
"submonad_fn fetch replace guard (gets f) =
(stateAssert guard [] >>= (\<lambda>u. gets (f \<circ> fetch)))"
apply (simp add: ext select_from_gets submonad_fn_def)
apply (rule bind_cong [OF refl])
apply (clarsimp simp: gets_modify dest!: fst_stateAssertD)
apply (simp add: gets_def)
done
lemma(in submonad) gets:
"fn (gets f) = (stateAssert guard [] >>= (\<lambda>u. gets (f \<circ> fetch)))"
unfolding fn_is_sm submonad_fn_gets
by (rule refl)
lemma (in submonad) return:
"fn (return x) = (stateAssert guard [] >>= (\<lambda>u. return x))"
using args gets
by (fastforce simp: gets_def bind_def get_def)
lemma (in submonad) mapM_guard_preserved:
"\<And>s s'. \<lbrakk> guard s; \<exists>rv. (rv, s') \<in> fst (mapM (fn \<circ> m) xs s)\<rbrakk> \<Longrightarrow> guard s'"
proof (induct xs)
case Nil
thus ?case
by (simp add: mapM_def sequence_def return_def)
next
case (Cons x xs)
thus ?case
apply (clarsimp simp: o_def mapM_Cons return_def bind_def)
apply (drule guard_preserved)
apply fastforce
done
qed
lemma (in submonad) mapM_x_guard_preserved:
"\<And>s s'. \<lbrakk> guard s; \<exists>rv. (rv, s') \<in> fst (mapM_x (fn \<circ> m) xs s)\<rbrakk> \<Longrightarrow> guard s'"
proof (induct xs)
case Nil
thus ?case
by (simp add: mapM_x_def sequence_x_def return_def)
next
case (Cons x xs)
thus ?case
apply (clarsimp simp: o_def mapM_x_Cons return_def bind_def)
apply (drule guard_preserved)
apply fastforce
done
qed
lemma (in submonad) stateAssert_fn:
"stateAssert guard [] >>= (\<lambda>u. fn m) = fn m"
by (simp add: fn_is_sm submonad_fn_def pred_conj_def
bind_subst_lift [OF stateAssert_stateAssert])
lemma (in submonad) fn_stateAssert:
"fn m >>= (\<lambda>x. stateAssert guard [] >>= (\<lambda>u. n x)) = (fn m >>= n)"
apply (simp add: fn_is_sm submonad_fn_def bind_assoc split_def)
apply (rule ext)
apply (rule bind_apply_cong [OF refl])+
apply (clarsimp simp: stateAssert_def bind_assoc in_monad select_f_def)
apply (drule iffD2 [OF replace_preserves_guard])
apply (fastforce simp: bind_def assert_def get_def return_def)
done
lemma submonad_mapM:
assumes sm: "submonad f r g sm" and sm': "submonad f r g sm'"
assumes efm: "\<And>x. empty_fail (m x)"
shows
"(sm (mapM m l)) = (stateAssert g [] >>= (\<lambda>u. mapM (sm' \<circ> m) l))"
proof (induct l)
case Nil
thus ?case
by (simp add: mapM_def sequence_def bind_def submonad.return [OF sm])
next
case (Cons x xs)
thus ?case
using sm sm' efm
apply (simp add: mapM_Cons)
apply (simp add: bind_subst_lift [OF submonad.stateAssert_fn])
apply (simp add: bind_assoc submonad_bind submonad.return)
apply (subst submonad.fn_stateAssert [OF sm'])
apply (intro ext bind_apply_cong [OF refl])
apply (subgoal_tac "g sta")
apply (clarsimp simp: stateAssert_def bind_def get_def assert_def return_def)
apply (frule(1) submonad.guard_preserved)
apply (erule(1) submonad.mapM_guard_preserved, fastforce simp: o_def)
done
qed
lemma submonad_mapM_x:
assumes sm: "submonad f r g sm" and sm': "submonad f r g sm'"
assumes efm: "\<And>x. empty_fail (m x)"
shows
"(sm (mapM_x m l)) = (stateAssert g [] >>= (\<lambda>u. mapM_x (sm' \<circ> m) l))"
proof (induct l)
case Nil
thus ?case
by (simp add: mapM_x_def sequence_x_def bind_def submonad.return [OF sm])
next
case (Cons x xs)
thus ?case
using sm sm' efm
apply (simp add: mapM_x_Cons)
apply (simp add: bind_subst_lift [OF submonad.stateAssert_fn])
apply (simp add: bind_assoc submonad_bind submonad.return)
apply (subst submonad.fn_stateAssert [OF sm'])
apply (intro ext bind_apply_cong [OF refl])
apply (subgoal_tac "g st")
apply (clarsimp simp: stateAssert_def bind_def get_def assert_def return_def)
apply (frule(1) submonad.guard_preserved, simp)
done
qed
lemma corres_select:
"(\<forall>s' \<in> S'. \<exists>s \<in> S. rvr s s') \<Longrightarrow> corres_underlying sr nf nf' rvr \<top> \<top> (select S) (select S')"
by (clarsimp simp: select_def corres_underlying_def)
lemma corres_select_f:
"\<lbrakk> \<forall>s' \<in> fst S'. \<exists>s \<in> fst S. rvr s s'; nf' \<Longrightarrow> \<not> snd S' \<rbrakk>
\<Longrightarrow> corres_underlying sr nf nf' rvr \<top> \<top> (select_f S) (select_f S')"
by (clarsimp simp: select_f_def corres_underlying_def)
lemma corres_modify':
"\<lbrakk> (\<forall>s s'. (s, s') \<in> sr \<longrightarrow> (f s, f' s') \<in> sr); r () () \<rbrakk>
\<Longrightarrow> corres_underlying sr nf nf' r \<top> \<top> (modify f) (modify f')"
by (clarsimp simp: modify_def corres_underlying_def bind_def get_def put_def)
(* FIXME: this should only be used for the lemma below *)
lemma corres_select_f_stronger:
"\<lbrakk> \<forall>s' \<in> fst S'. \<exists>s \<in> fst S. rvr s s'; nf' \<Longrightarrow> \<not> snd S' \<rbrakk>
\<Longrightarrow> corres_underlying sr nf nf' rvr \<top> \<top> (select_f S) (select_f S')"
by (clarsimp simp: select_f_def corres_underlying_def)
lemma stateAssert_sp:
"\<lbrace>P\<rbrace> stateAssert Q l \<lbrace>\<lambda>_. P and Q\<rbrace>"
by (clarsimp simp: valid_def stateAssert_def in_monad)
lemma corres_submonad:
"\<lbrakk> submonad f r g fn; submonad f' r' g' fn';
\<forall>s s'. (s, s') \<in> sr \<and> g s \<and> g' s' \<longrightarrow> (f s, f' s') \<in> ssr;
\<forall>s s' ss ss'. ((s, s') \<in> sr \<and> (ss, ss') \<in> ssr) \<longrightarrow> (r ss s, r' ss' s') \<in> sr;
corres_underlying ssr False nf' rvr \<top> \<top> x x'\<rbrakk>
\<Longrightarrow> corres_underlying sr False nf' rvr g g' (fn x) (fn' x')"
apply (subst submonad.fn_is_sm, assumption)+
apply (clarsimp simp: submonad_fn_def)
apply (rule corres_split' [OF _ _ stateAssert_sp stateAssert_sp])
apply (fastforce simp: corres_underlying_def stateAssert_def get_def
assert_def return_def bind_def)
apply (rule corres_split' [where r'="\<lambda>x y. (x, y) \<in> ssr",
OF _ _ hoare_post_taut hoare_post_taut])
apply clarsimp
apply (rule corres_split' [where r'="\<lambda>(x, x') (y, y'). rvr x y \<and> (x', y') \<in> ssr",
OF _ _ hoare_post_taut hoare_post_taut])
defer
apply clarsimp
apply (rule corres_split' [where r'=dc, OF _ _ hoare_post_taut hoare_post_taut])
apply (simp add: corres_modify')
apply clarsimp
apply (rule corres_select_f_stronger)
apply (clarsimp simp: corres_underlying_def)
apply (drule (1) bspec, clarsimp)
apply (drule (1) bspec, simp)
apply blast
apply (clarsimp simp: corres_underlying_def)
apply (drule (1) bspec, clarsimp)
done
lemma stateAssert_top [simp]:
"stateAssert \<top> l >>= f = f ()"
by (clarsimp simp add: stateAssert_def get_def bind_def return_def)
lemma stateAssert_A_top [simp]:
"stateAssert \<top> l = return ()"
by (simp add: stateAssert_def get_def bind_def return_def)
text {* Use of the submonad concept to demonstrate commutativity. *}
lemma gets_modify_comm:
"\<And> s. \<lbrakk> g (f s) = g s \<rbrakk> \<Longrightarrow>
(do x \<leftarrow> modify f; y \<leftarrow> gets g; m x y od) s =
(do y \<leftarrow> gets g; x \<leftarrow> modify f; m x y od) s"
by (simp add: modify_def gets_def get_def bind_def put_def return_def)
lemma bind_subst_lhs_inv:
"\<And>s. \<lbrakk> \<And>x s'. P s' \<Longrightarrow> (f x >>= g x) s' = h x s'; \<lbrace>P\<rbrace> a \<lbrace>\<lambda>_. P\<rbrace>; P s \<rbrakk> \<Longrightarrow>
(do x \<leftarrow> a; y \<leftarrow> f x; g x y od) s = (a >>= h) s"
apply (rule bind_apply_cong [OF refl])
apply (drule(2) use_valid)
apply simp
done
lemma gets_comm:
"do x \<leftarrow> gets f; y \<leftarrow> gets g; m x y od = do y \<leftarrow> gets g; x \<leftarrow> gets f; m x y od"
by (simp add: gets_def get_def return_def bind_def)
lemma submonad_comm:
assumes x1: "submonad_args f r g" and x2: "submonad_args f' r' g'"
assumes y: "m = submonad_fn f r g im" "m' = submonad_fn f' r' g' im'"
assumes z: "\<And>s x x'. r x (r' x' s) = r' x' (r x s)"
assumes gp: "\<And>s x. g (r' x s) = g s" and gp': "\<And>s x. g' (r x s) = g' s"
assumes efim: "empty_fail im" and efim': "empty_fail im'"
shows "(do x \<leftarrow> m; y \<leftarrow> m'; n x y od) = (do y \<leftarrow> m'; x \<leftarrow> m; n x y od)"
proof -
have P: "\<And>x s. g s \<Longrightarrow> f (r' x s) = f s"
apply (subgoal_tac "f (r' x (r (f s) s)) = f s")
apply (simp add: submonad_args.args[OF x1])
apply (simp add: z[symmetric])
apply (subst(asm) gp [symmetric])
apply (fastforce dest: submonad_args.argsD1[OF x1])
done
have Q: "\<And>x s. g' s \<Longrightarrow> f' (r x s) = f' s"
apply (subgoal_tac "f' (r x (r' (f' s) s)) = f' s")
apply (simp add: submonad_args.args[OF x2])
apply (simp add: z)
apply (subst(asm) gp' [symmetric])
apply (fastforce dest: submonad_args.argsD1[OF x2])
done
note empty_failD [OF efim, simp]
note empty_failD [OF efim', simp]
show ?thesis
apply (clarsimp simp: submonad_fn_def y bind_assoc split_def)
apply (subst bind_subst_lift [OF modify_stateAssert], rule gp gp')+
apply (simp add: bind_assoc)
apply (subst select_f_stateAssert, rule efim efim')+
apply (subst gets_stateAssert bind_subst_lift [OF stateAssert_stateAssert])+
apply (rule bind_cong)
apply (simp add: pred_conj_def conj_comms)
apply (simp add: bind_assoc select_f_walk[symmetric])
apply (clarsimp dest!: fst_stateAssertD)
apply (subst bind_assoc[symmetric],
subst bind_subst_lhs_inv [OF gets_modify_comm],
erule P Q, wp, simp, simp)+
apply (simp add: bind_assoc)
apply (simp add: select_f_walk[symmetric])
apply (subst gets_comm)
apply (rule bind_apply_cong [OF refl])+
apply (subst select_f_walk, simp, simp,
subst select_f_walk, simp, simp,
rule bind_apply_cong [OF refl])
apply (subst select_f_walk, simp, simp, rule bind_apply_cong [OF refl])
apply (clarsimp simp: simpler_gets_def select_f_def)
apply (simp add: bind_def get_def put_def modify_def z)
done
qed
lemma submonad_comm2:
assumes x1: "submonad_args f r g" and x2: "m = submonad_fn f r g im"
assumes y: "submonad f' r' g' m'"
assumes z: "\<And>s x x'. r x (r' x' s) = r' x' (r x s)"
assumes gp: "\<And>s x. g (r' x s) = g s" and gp': "\<And>s x. g' (r x s) = g' s"
assumes efim: "empty_fail im" and efim': "empty_fail im'"
shows "do x \<leftarrow> m; y \<leftarrow> m' im'; n x y od = do y \<leftarrow> m' im'; x \<leftarrow> m; n x y od"
apply (rule submonad_comm[where f'=f' and r'=r', OF x1 _ x2 _ z])
apply (insert y)
apply (fastforce simp add: submonad_def)
apply (fastforce dest: submonad.fn_is_sm)
apply (simp add: efim efim' gp gp')+
done
lemma submonad_bind_alt:
assumes x: "submonad_args f r g"
assumes y: "a = submonad_fn f r g a'" "\<And>rv. b rv = submonad_fn f r g (b' rv)"
assumes efa: "empty_fail a'" and efb: "\<And>x. empty_fail (b' x)"
shows "(a >>= b) = submonad_fn f r g (a' >>= b')"
proof -
have P: "submonad f r g (submonad_fn f r g)"
by (simp add: x submonad_def submonad_axioms_def)
have Q: "b = (\<lambda>rv. submonad_fn f r g (b' rv))"
by (rule ext) fact+
show ?thesis
by (simp add: y Q submonad_bind [OF P P P efa efb])
qed
lemma submonad_singleton:
"submonad_fn fetch replace \<top> (\<lambda>s. ({(rv s, s' s)}, False))
= (\<lambda>s. ({(rv (fetch s), replace (s' (fetch s)) s)}, False))"
apply (rule ext)
apply (simp add: submonad_fn_def bind_def gets_def
put_def get_def modify_def return_def
select_f_def UNION_eq)
done
lemma gets_submonad:
"\<lbrakk> submonad_args fetch replace \<top>; \<And>s. f s = f' (fetch s); m = gets f' \<rbrakk>
\<Longrightarrow> gets f = submonad_fn fetch replace \<top> m"
apply (drule submonad_args.args(3))
apply (clarsimp simp add: simpler_gets_def submonad_singleton)
done
lemma modify_submonad:
"\<lbrakk> \<And>s. f s = replace (K_record (f' (fetch s))) s; m = modify f' \<rbrakk>
\<Longrightarrow> modify f = submonad_fn fetch (replace o K_record) \<top> m"
by (simp add: simpler_modify_def submonad_singleton)
lemma fail_submonad:
"fail = submonad_fn fetch replace \<top> fail"
by (simp add: submonad_fn_def simpler_gets_def return_def
simpler_modify_def select_f_def bind_def fail_def)
lemma return_submonad:
"submonad_args fetch replace guard \<Longrightarrow>
return v = submonad_fn fetch replace \<top> (return v)"
by (simp add: return_def submonad_singleton submonad_args.args)
lemma assert_opt_submonad:
"submonad_args fetch replace \<top> \<Longrightarrow>
assert_opt v = submonad_fn fetch replace \<top> (assert_opt v)"
apply (case_tac v, simp_all add: assert_opt_def)
apply (rule fail_submonad)
apply (rule return_submonad)
apply assumption
done
lemma is_stateAssert_gets:
"\<lbrakk> \<forall>s. \<lbrace>op = s\<rbrace> f \<lbrace>\<lambda>_. op = s\<rbrace>; \<lbrace>\<top>\<rbrace> f \<lbrace>\<lambda>_. guard\<rbrace>;
empty_fail f; no_fail guard f; \<lbrace>guard\<rbrace> f \<lbrace>\<lambda>rv s. fetch s = rv\<rbrace> \<rbrakk>
\<Longrightarrow> f = do stateAssert guard []; gets fetch od"
apply (rule ext)
apply (clarsimp simp: bind_def empty_fail_def valid_def no_fail_def
stateAssert_def assert_def gets_def get_def
return_def fail_def image_def split_def)
apply (case_tac "f x")
apply (intro conjI impI)
apply (drule_tac x=x in spec)+
apply (subgoal_tac "\<forall>xa\<in>fst (f x). fst xa = fetch x \<and> snd xa = x")
apply fastforce
apply clarsimp
apply (drule_tac x=x in spec)+
apply fastforce
done
lemma is_modify:
"\<And>s. \<lbrakk> \<lbrace>op = s\<rbrace> f \<lbrace>\<lambda>_. op = (replace s)\<rbrace>; empty_fail f;
no_fail guard f; guard s \<rbrakk>
\<Longrightarrow> f s = modify replace s"
apply (clarsimp simp: bind_def empty_fail_def valid_def no_fail_def
stateAssert_def assert_def modify_def get_def put_def
return_def fail_def image_def split_def)
apply (case_tac "f s")
apply force
done
lemma submonad_comm':
assumes sm1: "submonad f r g m" and sm2: "submonad f' r' g' m'"
assumes z: "\<And>s x x'. r x (r' x' s) = r' x' (r x s)"
assumes gp: "\<And>s x. g (r' x s) = g s" and gp': "\<And>s x. g' (r x s) = g' s"
assumes efim: "empty_fail im" and efim': "empty_fail im'"
shows "(do x \<leftarrow> m im; y \<leftarrow> m' im'; n x y od) =
(do y \<leftarrow> m' im'; x \<leftarrow> m im; n x y od)"
apply (rule submonad_comm [where f'=f' and r'=r', OF _ _ _ _ z])
apply (insert sm1 sm2)
apply (fastforce dest: submonad.fn_is_sm simp: submonad_def)+
apply (simp add: efim efim' gp gp')+
done
end