-
Notifications
You must be signed in to change notification settings - Fork 0
/
Solves_Tac.thy
83 lines (71 loc) · 1.94 KB
/
Solves_Tac.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
(*
* Copyright 2014, NICTA
*
* This software may be distributed and modified according to the terms of
* the BSD 2-Clause license. Note that NO WARRANTY is provided.
* See "LICENSE_BSD2.txt" for details.
*
* @TAG(NICTA_BSD)
*)
theory Solves_Tac
imports
"Main"
begin
ML \<open>
val ETAC_LIMIT = 5;
(* Solve the tactic by applying the given rule, then unifying assumptions. *)
fun solve_tac ctxt thm i goal =
let
(* Use "etac", but give up if there are countless unifications that
* don't end up working. *)
fun limited_etac thm i =
Seq.take ETAC_LIMIT o eresolve_tac ctxt [thm] i
in
if Thm.no_prems thm then
SOLVED' (resolve_tac ctxt [thm]) i goal
else
SOLVED' (
limited_etac thm
THEN_ALL_NEW (
Goal.norm_hhf_tac ctxt THEN' Method.assm_tac ctxt)) i goal
end
(*
* Return all thms available in the context.
*
* Clagged from "find_theorems"
*)
fun all_facts_of ctxt =
let
val local_facts = Proof_Context.facts_of ctxt;
val global_facts = Global_Theory.facts_of (Proof_Context.theory_of ctxt);
in
maps Facts.selections
(Facts.dest_static false [global_facts] local_facts @
Facts.dest_static false [] global_facts)
|> map snd
end
(* Try blindly applying every previously proven rule. *)
fun solves_tac ctxt =
let
val assms =
Proof_Context.get_fact ctxt (Facts.named "local.assms")
handle ERROR _ => [];
fun add_prems i = TRY (Method.insert_tac ctxt assms i);
val all_facts = all_facts_of ctxt
val solve_tacs = map (fn thm => solve_tac ctxt thm 1) all_facts
in
(add_prems THEN' assume_tac ctxt)
ORELSE'
SOLVED' (Subgoal.FOCUS_PARAMS (K (add_prems 1 THEN FIRST solve_tacs)) ctxt)
end
\<close>
method_setup solves = "
Scan.succeed (SIMPLE_METHOD' o solves_tac)
" "find a previously proven fact that solves the goal"
lemma "(A = B) = (B = A)"
apply solves
oops
lemma "\<lbrakk> A \<Longrightarrow> B ; B \<Longrightarrow> A \<rbrakk> \<Longrightarrow> A = B"
apply solves
oops
end