-
Notifications
You must be signed in to change notification settings - Fork 0
/
Rule_By_Method.thy
293 lines (226 loc) · 9.8 KB
/
Rule_By_Method.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
(*
* Copyright 2014, NICTA
*
* This software may be distributed and modified according to the terms of
* the BSD 2-Clause license. Note that NO WARRANTY is provided.
* See "LICENSE_BSD2.txt" for details.
*
* @TAG(NICTA_BSD)
*)
theory Rule_By_Method
imports
Main
"~~/src/HOL/Eisbach/Eisbach_Tools"
begin
ML \<open>
signature RULE_BY_METHOD =
sig
val rule_by_tac: Proof.context -> {vars : bool, prop: bool} ->
(Proof.context -> tactic) -> (Proof.context -> tactic) list -> Position.T -> thm
end;
fun atomize ctxt = Conv.fconv_rule (Object_Logic.atomize ctxt);
fun fix_schematics ctxt raw_st =
let
val ((schematic_types, [st']), ctxt1) = Variable.importT [raw_st] ctxt;
fun certify_inst ctxt inst = map (apsnd (Thm.cterm_of ctxt)) (#2 inst)
val (schematic_terms, ctxt2) =
Variable.import_inst true [Thm.prop_of st'] ctxt1
|>> certify_inst ctxt1;
val schematics = (schematic_types, schematic_terms);
in (Thm.instantiate schematics st', ctxt2) end
fun curry_asm ctxt st = if Thm.nprems_of st = 0 then Seq.empty else
let
val prems = Thm.cprem_of st 1 |> Thm.term_of |> Logic.strip_imp_prems;
val (thesis :: xs,ctxt') = Variable.variant_fixes ("thesis" :: replicate (length prems) "P") ctxt;
val rl =
xs
|> map (fn x => Thm.cterm_of ctxt' (Free (x, propT)))
|> Conjunction.mk_conjunction_balanced
|> (fn xs => Thm.apply (Thm.apply @{cterm "Pure.imp"} xs) (Thm.cterm_of ctxt' (Free (thesis,propT))))
|> Thm.assume
|> Conjunction.curry_balanced (length prems)
|> Drule.implies_intr_hyps
val rl' = singleton (Variable.export ctxt' ctxt) rl;
in Thm.bicompose (SOME ctxt) {flatten = false, match = false, incremented = false}
(false, rl', 1) 1 st end;
val drop_trivial_imp =
let
val asm =
Thm.assume (Drule.protect @{cprop "(PROP A \<Longrightarrow> PROP A) \<Longrightarrow> PROP A"})
|> Goal.conclude;
in
Thm.implies_elim asm (Thm.trivial @{cprop "PROP A"})
|> Drule.implies_intr_hyps
|> Thm.generalize ([],["A"]) 1
|> Drule.zero_var_indexes
end
val drop_trivial_imp' =
let
val asm =
Thm.assume (Drule.protect @{cprop "(PROP P \<Longrightarrow> A) \<Longrightarrow> A"})
|> Goal.conclude;
val asm' = Thm.assume @{cprop "PROP P == Trueprop A"}
in
Thm.implies_elim asm (asm' COMP Drule.equal_elim_rule1)
|> Thm.implies_elim (asm' COMP Drule.equal_elim_rule2)
|> Drule.implies_intr_hyps
|> Thm.permute_prems 0 ~1
|> Thm.generalize ([],["A","P"]) 1
|> Drule.zero_var_indexes
end
fun atomize_equiv_tac ctxt i =
Object_Logic.full_atomize_tac ctxt i
THEN PRIMITIVE (fn st' =>
let val (_,[A,_]) = Drule.strip_comb (Thm.cprem_of st' i) in
if Object_Logic.is_judgment ctxt (Thm.term_of A) then st'
else error ("Failed to fully atomize result:\n" ^ (Syntax.string_of_term ctxt (Thm.term_of A))) end)
structure Data = Proof_Data
(
type T = thm list * bool;
fun init _ = ([],false);
);
val empty_rule_prems = Data.map (K ([],true));
fun add_rule_prem thm = Data.map (apfst (Thm.add_thm thm));
fun with_rule_prems enabled parse =
Scan.state :|-- (fn context =>
let
val context' = Context.proof_of context |> Data.map (K ([Drule.free_dummy_thm],enabled))
|> Context.Proof
in Scan.lift (Scan.pass context' parse) end)
fun get_rule_prems ctxt =
let
val (thms,b) = Data.get ctxt
in if (not b) then [] else thms end
fun zip_subgoal assume tac (ctxt,st : thm) = if Thm.nprems_of st = 0 then Seq.single (ctxt,st) else
let
fun bind_prems st' =
let
val prems = Drule.cprems_of st';
val (asms, ctxt') = Assumption.add_assumes prems ctxt;
val ctxt'' = fold add_rule_prem asms ctxt';
val st'' = Goal.conclude (Drule.implies_elim_list st' (map Thm.assume prems));
in (ctxt'',st'') end
fun defer_prems st' =
let
val nprems = Thm.nprems_of st';
val st'' = Thm.permute_prems 0 nprems (Goal.conclude st');
in (ctxt,st'') end;
in
tac ctxt (Goal.protect 1 st)
|> Seq.map (if assume then bind_prems else defer_prems) end
fun zip_subgoals assume tacs pos ctxt st =
let
val nprems = Thm.nprems_of st;
val _ = nprems < length tacs andalso error ("More tactics than rule assumptions" ^ Position.here pos);
val tacs' = map (zip_subgoal assume) (tacs @ (replicate (nprems - length tacs) (K all_tac)));
val ctxt' = empty_rule_prems ctxt;
in Seq.EVERY tacs' (ctxt',st) end;
fun rule_by_tac' ctxt {vars,prop} tac asm_tacs pos raw_st =
let
val (st,ctxt1) = if vars then (raw_st,ctxt) else fix_schematics ctxt raw_st;
val ([x],ctxt2) = Proof_Context.add_fixes [(Binding.name Auto_Bind.thesisN,NONE, NoSyn)] ctxt1;
val thesis = if prop then Free (x,propT) else Object_Logic.fixed_judgment ctxt2 x;
val cthesis = Thm.cterm_of ctxt thesis;
val revcut_rl' = Thm.instantiate' [] ([NONE,SOME cthesis]) @{thm revcut_rl};
fun is_thesis t = Logic.strip_assums_concl t aconv thesis;
fun err thm str = error (str ^ Position.here pos ^ "\n" ^
(Pretty.string_of (Goal_Display.pretty_goal ctxt thm)));
fun pop_thesis st =
let
val prems = Thm.prems_of st |> tag_list 0;
val (i,_) = (case filter (is_thesis o snd) prems of
[] => err st "Lost thesis"
| [x] => x
| _ => err st "More than one result obtained");
in st |> Thm.permute_prems 0 i end
val asm_st =
(revcut_rl' OF [st])
|> (fn st => Goal.protect (Thm.nprems_of st - 1) st)
val (ctxt3,concl_st) = case Seq.pull (zip_subgoals (not vars) asm_tacs pos ctxt2 asm_st) of
SOME (x,_) => x
| NONE => error ("Failed to apply tactics to rule assumptions. " ^ (Position.here pos));
val concl_st_prepped =
concl_st
|> Goal.conclude
|> (fn st => Goal.protect (Thm.nprems_of st) st |> Thm.permute_prems 0 ~1 |> Goal.protect 1)
val concl_st_result = concl_st_prepped
|> (tac ctxt3
THEN (PRIMITIVE pop_thesis)
THEN curry_asm ctxt
THEN PRIMITIVE (Goal.conclude #> Thm.permute_prems 0 1 #> Goal.conclude))
val result = (case Seq.pull concl_st_result of
SOME (result,_) => singleton (Proof_Context.export ctxt3 ctxt) result
| NONE => err concl_st_prepped "Failed to apply tactic to rule conclusion:")
val drop_rule = if prop then drop_trivial_imp else drop_trivial_imp'
val result' = ((Goal.protect (Thm.nprems_of result -1) result) RS drop_rule)
|> (if prop then all_tac else
(atomize_equiv_tac ctxt (Thm.nprems_of result)
THEN resolve_tac ctxt @{thms Pure.reflexive} (Thm.nprems_of result)))
|> Seq.hd
|> Raw_Simplifier.norm_hhf ctxt
in Drule.zero_var_indexes result' end;
fun rule_by_tac is_closed ctxt args tac asm_tacs pos raw_st =
let val f = rule_by_tac' ctxt args tac asm_tacs pos
in
if is_closed orelse Context_Position.is_really_visible ctxt then SOME (f raw_st)
else try f raw_st
end
fun pos_closure (scan : 'a context_parser) :
(('a * (Position.T * bool)) context_parser) = (fn (context,toks) =>
let
val (((context',x),tr_toks),toks') = Scan.trace (Scan.pass context (Scan.state -- scan)) toks;
val pos = Token.range_of tr_toks;
val is_closed = exists (fn t => is_some (Token.get_value t)) tr_toks
in ((x,(Position.range_position pos, is_closed)),(context',toks')) end)
val parse_flags = Args.mode "schematic" -- Args.mode "raw_prop" >> (fn (b,b') => {vars = b, prop = b'})
fun tac m ctxt =
Method.NO_CONTEXT_TACTIC ctxt
(Method.evaluate_runtime m ctxt []);
(* Declare as a mixed attribute to avoid any partial evaluation *)
fun handle_dummy f (context, thm) =
case (f context thm) of SOME thm' => (NONE, SOME thm')
| NONE => (SOME context, SOME Drule.free_dummy_thm)
val (rule_prems_by_method : attribute context_parser) = Scan.lift parse_flags :-- (fn flags =>
pos_closure (Scan.repeat1
(with_rule_prems (not (#vars flags)) Method.text_closure ||
Scan.lift (Args.$$$ "_" >> (K Method.succeed_text))))) >>
(fn (flags,(ms,(pos, is_closed))) => handle_dummy (fn context =>
rule_by_tac is_closed (Context.proof_of context) flags (K all_tac) (map tac ms) pos))
val (rule_concl_by_method : attribute context_parser) = Scan.lift parse_flags :-- (fn flags =>
pos_closure (with_rule_prems (not (#vars flags)) Method.text_closure)) >>
(fn (flags,(m,(pos, is_closed))) => handle_dummy (fn context =>
rule_by_tac is_closed (Context.proof_of context) flags (tac m) [] pos))
val _ = Theory.setup
(Global_Theory.add_thms_dynamic (@{binding "rule_prems"},
(fn context => get_rule_prems (Context.proof_of context))) #>
Attrib.setup @{binding "#"} rule_prems_by_method
"transform rule premises with method" #>
Attrib.setup @{binding "@"} rule_concl_by_method
"transform rule conclusion with method" #>
Attrib.setup @{binding atomized}
(Scan.succeed (Thm.rule_attribute []
(fn context => fn thm =>
Conv.fconv_rule (Object_Logic.atomize (Context.proof_of context)) thm
|> Drule.zero_var_indexes)))
"atomize rule")
\<close>
experiment begin
ML \<open>
val [att] = @{attributes [@\<open>erule thin_rl, cut_tac TrueI, fail\<close>]}
val k = Attrib.attribute @{context} att
val _ = case (try k (Context.Proof @{context}, Drule.dummy_thm)) of
SOME _ => error "Should fail"
| _ => ()
\<close>
lemmas baz = [[@\<open>erule thin_rl, rule revcut_rl[of "P \<longrightarrow> P \<and> P"], simp\<close>]] for P
lemmas bazz[THEN impE] = TrueI[@\<open>erule thin_rl, rule revcut_rl[of "P \<longrightarrow> P \<and> P"], simp\<close>] for P
lemma "Q \<longrightarrow> Q \<and> Q" by (rule baz)
method silly_rule for P :: bool uses rule =
(rule [[@\<open>erule thin_rl, cut_tac rule, drule asm_rl[of P]\<close>]])
lemma assumes A shows A by (silly_rule A rule: \<open>A\<close>)
lemma assumes A[simp]: "A" shows A
apply (match conclusion in P for P \<Rightarrow>
\<open>rule [[@\<open>erule thin_rl, rule revcut_rl[of "P"], simp\<close>]]\<close>)
done
end
end