-
Notifications
You must be signed in to change notification settings - Fork 0
/
List_Lib.thy
61 lines (49 loc) · 2.08 KB
/
List_Lib.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
(*
* Copyright 2014, NICTA
*
* This software may be distributed and modified according to the terms of
* the BSD 2-Clause license. Note that NO WARRANTY is provided.
* See "LICENSE_BSD2.txt" for details.
*
* @TAG(NICTA_BSD)
*)
chapter "List Manipulation Functions"
theory List_Lib
imports "~~/src/HOL/Main"
begin
definition list_replace :: "'a list \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a list" where
"list_replace list a b \<equiv> map (\<lambda>x. if x = a then b else x) list"
primrec list_replace_list :: "'a list \<Rightarrow> 'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where
"list_replace_list [] a list' = []" |
"list_replace_list (x # xs) a list' = (if x = a then list' @ xs
else x # list_replace_list xs a list')"
definition list_swap :: "'a list \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a list" where
"list_swap list a b \<equiv> map (\<lambda>x. if x = a then b else if x = b then a else x) list"
primrec list_insert_after :: "'a list \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a list" where
"list_insert_after [] a b = []" |
"list_insert_after (x # xs) a b = (if x = a then x # b # xs
else x # list_insert_after xs a b)"
primrec list_remove :: "'a list \<Rightarrow> 'a \<Rightarrow> 'a list" where
"list_remove [] a = []" |
"list_remove (x # xs) a = (if x = a then (list_remove xs a)
else x # (list_remove xs a))"
fun after_in_list :: "'a list \<Rightarrow> 'a \<Rightarrow> 'a option" where
"after_in_list [] a = None" |
"after_in_list [x] a = None" |
"after_in_list (x # y # xs) a = (if a = x then Some y else after_in_list (y # xs) a)"
lemma zip_take1:
"zip (take n xs) ys = take n (zip xs ys)"
apply (induct xs arbitrary: n ys)
apply simp_all
apply (case_tac n, simp_all)
apply (case_tac ys, simp_all)
done
lemma zip_take2:
"zip xs (take n ys) = take n (zip xs ys)"
apply (induct xs arbitrary: n ys)
apply simp_all
apply (case_tac n, simp_all)
apply (case_tac ys, simp_all)
done
lemmas zip_take = zip_take1 zip_take2
end