-
Notifications
You must be signed in to change notification settings - Fork 0
/
ListLibLemmas.thy
1094 lines (960 loc) · 36.1 KB
/
ListLibLemmas.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(*
* Copyright 2014, NICTA
*
* This software may be distributed and modified according to the terms of
* the BSD 2-Clause license. Note that NO WARRANTY is provided.
* See "LICENSE_BSD2.txt" for details.
*
* @TAG(NICTA_BSD)
*)
theory ListLibLemmas
imports List_Lib LemmaBucket
begin
(* This theory contains various list results that
are used in proofs related to the abstract cdt_list.*)
(* Sorting a list given a partial ordering, where
elements are only necessarily comparable if
relation R holds between them. *)
locale partial_sort =
fixes less :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
fixes R :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
assumes all_comp: "\<And>x y. R x y \<Longrightarrow> (less x y \<or> less y x)"
(*This is only necessary to guarantee the uniqueness of
sorted lists. *)
assumes antisym: "\<And>x y. R x y \<Longrightarrow> less x y \<and> less y x \<Longrightarrow> x = y"
assumes trans: "\<And>x y z. less x y \<Longrightarrow> less y z \<Longrightarrow> less x z"
begin
primrec pinsort :: " 'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where
"pinsort x [] = [x]" |
"pinsort x (y#ys) = (if (less x y) then (x#y#ys) else y#(pinsort x ys))"
inductive psorted :: "'a list \<Rightarrow> bool" where
Nil [iff]: "psorted []"
| Cons: "\<forall>y\<in>set xs. less x y \<Longrightarrow> psorted xs \<Longrightarrow> psorted (x # xs)"
definition R_set where
"R_set S \<equiv> \<forall>x y. x \<in> S \<longrightarrow> y \<in> S \<longrightarrow> R x y"
abbreviation R_list where
"R_list xs \<equiv> R_set (set xs)"
definition psort :: "'a list \<Rightarrow> 'a list" where
"psort xs = foldr pinsort xs []"
end
context partial_sort begin
lemma psorted_Cons: "psorted (x#xs) = (psorted xs & (\<forall> y \<in> set xs. less x y))"
apply (rule iffI)
apply (erule psorted.cases,simp)
apply clarsimp
apply (rule psorted.Cons,clarsimp+)
done
lemma psorted_distinct_set_unique:
assumes "psorted xs" "distinct xs" "psorted ys" "distinct ys" "set xs = set ys"
"R_list xs"
shows "xs = ys"
proof -
from assms have 1: "length xs = length ys" by (auto dest!: distinct_card)
from assms show ?thesis
proof(induct rule:list_induct2[OF 1])
case 1 show ?case by simp
next
case 2 thus ?case
by (simp add: psorted_Cons R_set_def)
(metis Diff_insert_absorb antisym insertE insert_iff)
qed
qed
lemma pinsort_set: "set (pinsort a xs) = insert a (set xs)"
apply (induct xs)
apply simp
apply simp
apply blast
done
lemma all_comp': "R x y \<Longrightarrow> \<not>less x y \<Longrightarrow> less y x"
apply (cut_tac x=x and y=y in all_comp,simp+)
done
lemma pinsort_sorted: "R_set (insert a (set xs)) \<Longrightarrow> psorted xs \<Longrightarrow> psorted (pinsort a xs)"
apply (induct xs arbitrary: a)
apply (simp add: psorted_Cons)
apply (simp add: psorted_Cons)
apply clarsimp
apply (simp add: pinsort_set)
apply (intro impI conjI)
apply (intro ballI)
apply (drule_tac x=x in bspec)
apply simp
apply (frule(1) trans)
apply simp
apply (simp add: R_set_def)
apply (rule all_comp')
apply (simp add: R_set_def)
apply simp
done
lemma psort_set: "set (psort xs) = set xs"
apply (simp add: psort_def)
apply (induct xs)
apply simp
apply (simp add: pinsort_set)
done
lemma psort_psorted: "R_list xs \<Longrightarrow> psorted (psort xs)"
apply (simp add: psort_def)
apply (induct xs)
apply simp
apply simp
apply (cut_tac xs =xs in psort_set)
apply (simp add: psort_def)
apply (rule pinsort_sorted)
apply simp
apply (simp add: R_set_def)
done
lemma insort_length: "length (pinsort a xs) = Suc (length xs)"
apply (induct xs)
apply simp
apply simp
done
lemma psort_length: "length (psort xs) = length xs"
apply (simp add: psort_def)
apply (induct xs)
apply simp
apply simp
apply (simp add: insort_length)
done
lemma pinsort_distinct: "\<lbrakk>a \<notin> set xs; distinct xs\<rbrakk>
\<Longrightarrow> distinct (pinsort a xs)"
apply (induct xs)
apply simp
apply (clarsimp simp add: pinsort_set)
done
lemma psort_distinct: "distinct xs \<Longrightarrow> distinct (psort xs)"
apply (simp add: psort_def)
apply (induct xs)
apply simp
apply simp
apply (rule pinsort_distinct)
apply (fold psort_def)
apply (simp add: psort_set)+
done
lemma in_can_split: "y \<in> set list \<Longrightarrow> \<exists>ys xs. list = xs @ (y # ys)"
apply (induct list)
apply simp
apply clarsimp
apply (elim disjE)
apply simp
apply force
apply simp
apply (elim exE)
apply simp
apply (rule_tac x=ys in exI)
apply force
done
lemma lsorted_sorted:
assumes lsorted: "\<And>x y xs ys . list = xs @ (x # y # ys) \<Longrightarrow> less x y"
shows "psorted list"
apply (insert lsorted)
apply atomize
apply simp
apply (induct list)
apply simp
apply (simp add: psorted_Cons)
apply (rule context_conjI)
apply (erule meta_mp)
apply clarsimp
apply (drule_tac x="a#xs" in spec)
apply (drule_tac x=x in spec)
apply (drule_tac x=y in spec)
apply (erule mp)
apply force
apply (intro ballI)
apply clarsimp
apply (drule in_can_split)
apply (elim exE)
apply (drule_tac x="[]" in spec)
apply simp
apply (case_tac xs)
apply simp
apply (clarsimp simp add: psorted_Cons)
apply (blast intro: trans)
done
lemma psorted_set: "finite A \<Longrightarrow> R_set A \<Longrightarrow> \<exists>!xs. set xs = A \<and> psorted xs \<and> distinct xs"
apply (drule finite_distinct_list)
apply clarify
apply (rule_tac a="psort xs" in ex1I)
apply (auto simp: psorted_distinct_set_unique psort_set psort_psorted psort_distinct)
done
end
text {* These list operations roughly correspond to cdt
operations. *}
lemma after_can_split: "after_in_list list x = Some y \<Longrightarrow> \<exists>ys xs. list = xs @ (x # y # ys)"
apply (induct list x rule: after_in_list.induct)
apply simp+
apply (simp split: if_split_asm)
apply force
apply (elim exE)
apply simp
apply (rule_tac x="ys" in exI)
apply simp
done
lemma distinct_inj_middle: "distinct list \<Longrightarrow> list = (xa @ x # xb) \<Longrightarrow> list = (ya @ x # yb) \<Longrightarrow> xa = ya \<and> xb = yb"
apply (induct list arbitrary: xa ya)
apply simp
apply clarsimp
apply (case_tac "xa")
apply simp
apply (case_tac "ya")
apply simp
apply clarsimp
apply clarsimp
apply (case_tac "ya")
apply (simp (no_asm_simp))
apply simp
apply clarsimp
done
lemma after_can_split_distinct:
"distinct list \<Longrightarrow> after_in_list list x = Some y \<Longrightarrow> \<exists>!ys. \<exists>!xs. list = xs @ (x # y # ys)"
apply (frule after_can_split)
apply (elim exE)
apply (rule ex1I)
apply (rule ex1I)
apply assumption
apply simp
apply (elim ex1E)
apply (thin_tac "\<forall>x. P x" for P)
apply (frule_tac yb="y#ysa" in distinct_inj_middle,assumption+)
apply simp
done
lemma after_ignore_head: "x \<notin> set list \<Longrightarrow> after_in_list (list @ list') x = after_in_list list' x"
apply (induct list x rule: after_in_list.induct)
apply simp
apply simp
apply (case_tac list',simp+)
done
lemma after_distinct_one_sibling: "distinct list \<Longrightarrow> list = xs @ x # y # ys \<Longrightarrow> after_in_list list x = Some y"
apply (induct xs)
apply simp
apply simp
apply clarsimp
apply (subgoal_tac "after_in_list ((a # xs) @ (x # y # ys)) x = after_in_list (x # y # ys) x")
apply simp
apply (rule after_ignore_head)
apply simp
done
lemma (in partial_sort) after_order_sorted:
assumes after_order: "\<And>x y. after_in_list list x = Some y \<Longrightarrow> less x y"
assumes distinct: "distinct list"
shows "psorted list"
apply (rule lsorted_sorted)
apply (rule after_order)
apply (erule after_distinct_one_sibling[OF distinct])
done
lemma hd_not_after_in_list:
"\<lbrakk>distinct xs; x \<notin> set xs\<rbrakk> \<Longrightarrow> after_in_list (x # xs) a \<noteq> Some x"
apply (induct xs a rule: after_in_list.induct)
apply simp+
apply fastforce
done
lemma after_in_list_inj:
"\<lbrakk>distinct list; after_in_list list a = Some x; after_in_list list b = Some x\<rbrakk>
\<Longrightarrow> a = b"
apply(induct list)
apply(simp)
apply(simp)
apply(case_tac "a=aa")
apply(case_tac list, simp)
apply(simp add: hd_not_after_in_list split: if_split_asm)
apply(case_tac list, simp)
apply(simp add: hd_not_after_in_list split: if_split_asm)
done
lemma list_replace_ignore:"a \<notin> set list \<Longrightarrow> list_replace list a b = list"
apply (simp add: list_replace_def)
apply (induct list,clarsimp+)
done
lemma list_replace_empty[simp]: "list_replace [] a b = []"
by (simp add: list_replace_def)
lemma list_replace_empty2[simp]:
"(list_replace list a b = []) = (list = [])"
by (simp add: list_replace_def)
lemma after_in_list_list_replace: "\<lbrakk>p \<noteq> dest; p \<noteq> src;
after_in_list list p = Some src\<rbrakk>
\<Longrightarrow> after_in_list (list_replace list src dest) p = Some dest"
apply (simp add: list_replace_def)
apply (induct list)
apply simp+
apply (case_tac list)
apply simp+
apply (intro conjI impI,simp+)
done
lemma replace_list_preserve_after: "dest \<notin> set list \<Longrightarrow> distinct list \<Longrightarrow> after_in_list (list_replace list src dest) dest = after_in_list list src"
apply (simp add: list_replace_def)
apply (induct list src rule: after_in_list.induct)
apply (simp+)
apply fastforce
done
lemma replace_list_preserve_after': "\<lbrakk>p \<noteq> dest; p \<noteq> src;
after_in_list list p \<noteq> Some src\<rbrakk>
\<Longrightarrow> after_in_list (list_replace list src dest) p = after_in_list list p"
apply (simp add: list_replace_def)
apply (induct list p rule: after_in_list.induct)
apply (simp+)
apply fastforce
done
lemma distinct_after_in_list_not_self:
"distinct list \<Longrightarrow> after_in_list list src \<noteq> Some src"
apply (induct list,simp+)
apply (case_tac list,clarsimp+)
done
lemma set_list_insert_after:
"set (list_insert_after list a b) = set list \<union> (if a \<in> set list then {b} else {})"
apply(induct list)
apply(simp)
apply(simp)
done
lemma distinct_list_insert_after:
"\<lbrakk>distinct list; b \<notin> set list \<or> a \<notin> set list\<rbrakk> \<Longrightarrow> distinct (list_insert_after list a b)"
apply(induct list)
apply(simp)
apply(fastforce simp: set_list_insert_after)
done
lemma list_insert_after_after:
"\<lbrakk>distinct list; b \<notin> set list; a \<in> set list\<rbrakk>
\<Longrightarrow> after_in_list (list_insert_after list a b) p
= (if p = a then Some b else if p = b then after_in_list list a else after_in_list list p)"
apply(induct list p rule: after_in_list.induct)
apply (simp split: if_split_asm)+
apply fastforce
done
lemma list_remove_removed:
"set (list_remove list x) = (set list) - {x}"
apply (induct list,simp+)
apply blast
done
lemma remove_distinct_helper: "\<lbrakk>distinct (list_remove list x); a \<noteq> x; a \<notin> set list;
distinct list\<rbrakk>
\<Longrightarrow> a \<notin> set (list_remove list x)"
apply (induct list)
apply (simp split: if_split_asm)+
done
lemma list_remove_distinct:
"distinct list \<Longrightarrow> distinct (list_remove list x)"
apply (induct list)
apply (simp add: remove_distinct_helper split: if_split_asm)+
done
lemma list_remove_none: "x \<notin> set list \<Longrightarrow> list_remove list x = list"
apply (induct list)
apply clarsimp+
done
lemma replace_distinct: "x \<notin> set list \<Longrightarrow> distinct list \<Longrightarrow> distinct (list_replace list y x)"
apply (induct list)
apply (simp add: list_replace_def)+
apply blast
done
lemma set_list_replace_list:
"\<lbrakk>distinct list; slot \<in> set list; slot \<notin> set list'\<rbrakk>
\<Longrightarrow> set (list_replace_list list slot list') = set list \<union> set list' - {slot}"
apply (induct list)
apply auto
done
lemma after_in_list_in_list:
"after_in_list list a = Some b \<Longrightarrow> b \<in> set list"
apply(induct list a arbitrary: b rule: after_in_list.induct)
apply (simp split: if_split_asm)+
done
lemma list_replace_empty_after_empty:
"\<lbrakk>after_in_list list p = Some slot; distinct list\<rbrakk>
\<Longrightarrow> after_in_list (list_replace_list list slot []) p = after_in_list list slot"
apply(induct list slot rule: after_in_list.induct)
apply (simp split: if_split_asm)+
apply (case_tac xs,simp+)
apply (case_tac xs,simp+)
apply (auto dest!: after_in_list_in_list)
done
lemma list_replace_after_fst_list:
"\<lbrakk>after_in_list list p = Some slot; distinct list\<rbrakk>
\<Longrightarrow> after_in_list (list_replace_list list slot (x # xs)) p = Some x"
apply(induct list p rule: after_in_list.induct)
apply (simp split: if_split_asm)+
apply (drule after_in_list_in_list)+
apply force
done
lemma after_in_list_append_notin_hd:
"p \<notin> set list' \<Longrightarrow> after_in_list (list' @ list) p = after_in_list list p"
apply(induct list', simp, simp)
apply(case_tac list', simp)
apply(case_tac list, simp+)
done
lemma after_in_list_append_last_hd:
"\<lbrakk>p \<in> set list'; after_in_list list' p = None\<rbrakk>
\<Longrightarrow> after_in_list (list' @ x # xs) p = Some x"
apply(induct list' p rule: after_in_list.induct)
apply(simp)
apply(simp)
apply(simp split: if_split_asm)
done
lemma after_in_list_append_in_hd:
"after_in_list list p = Some a \<Longrightarrow> after_in_list (list @ list') p = Some a"
apply(induct list p rule: after_in_list.induct)
apply(simp split: if_split_asm)+
done
lemma after_in_list_in_list': "after_in_list list a = Some y \<Longrightarrow> a \<in> set list"
apply (induct list a rule: after_in_list.induct)
apply simp+
apply force
done
lemma list_replace_after_None_notin_new:
"\<lbrakk>after_in_list list p = None; p \<notin> set list'\<rbrakk>
\<Longrightarrow> after_in_list (list_replace_list list slot list') p = None"
apply(induct list)
apply(simp)
apply(simp)
apply(intro conjI impI)
apply(simp)
apply(case_tac list, simp)
apply(induct list')
apply(simp)
apply(simp)
apply(case_tac list', simp, simp)
apply(simp split: if_split_asm)
apply(simp add: after_in_list_append_notin_hd)
apply(simp add: after_in_list_append_notin_hd)
apply(case_tac "list_replace_list list slot list'")
apply(simp)
apply(simp)
apply(case_tac list, simp, simp split: if_split_asm)
done
lemma list_replace_after_notin_new:
"\<lbrakk>after_in_list list p = Some a; a \<noteq> slot; p \<notin> set list'; p \<noteq> slot\<rbrakk>
\<Longrightarrow> after_in_list (list_replace_list list slot list') p = Some a"
apply(induct list)
apply(simp)
apply(simp)
apply(intro conjI impI)
apply(simp add: after_in_list_append_notin_hd)
apply(case_tac list, simp, simp)
apply(case_tac list, simp, simp split: if_split_asm)
apply(insert after_in_list_append_notin_hd)
apply(atomize)
apply(erule_tac x=p in allE, erule_tac x="[aa]" in allE, erule_tac x="list' @ lista" in allE)
apply(simp)
done
lemma list_replace_after_None_notin_old:
"\<lbrakk>after_in_list list' p = None; p \<in> set list'; p \<notin> set list\<rbrakk>
\<Longrightarrow> after_in_list (list_replace_list list slot list') p = after_in_list list slot"
apply(induct list)
apply(simp)
apply(simp)
apply(intro conjI impI)
apply(simp)
apply(case_tac list)
apply(simp)
apply(simp add: after_in_list_append_last_hd)
apply(case_tac "list_replace_list list slot list'")
apply(simp)
apply(case_tac list, simp, simp)
apply(simp)
apply(case_tac list, simp, simp)
done
lemma list_replace_after_notin_old:
"\<lbrakk>after_in_list list' p = Some a; p \<notin> set list; slot \<in> set list\<rbrakk>
\<Longrightarrow> after_in_list (list_replace_list list slot list') p = Some a"
apply(induct list)
apply(simp)
apply(simp)
apply(intro conjI impI)
apply(simp add: after_in_list_append_in_hd)
apply(simp)
apply(case_tac "list_replace_list list slot list'")
apply(simp)
apply(simp)
done
lemma list_replace_set: "x \<in> set list \<Longrightarrow> set (list_replace list x y) = insert y (set (list) - {x})"
apply (induct list)
apply (simp add: list_replace_def)+
apply (intro impI conjI)
apply blast+
done
lemma list_swap_both: "x \<in> set list \<Longrightarrow> y \<in> set list \<Longrightarrow> set (list_swap list x y) = set (list)"
apply (induct list)
apply (simp add: list_swap_def)+
apply (intro impI conjI)
apply blast+
done
lemma list_swap_self[simp]: "list_swap list x x = list"
apply (simp add: list_swap_def)
done
lemma map_ignore: "x \<notin> set list \<Longrightarrow> (map (\<lambda>xa. if xa = x then y else xa)
list) = list"
apply (induct list)
apply simp+
apply blast
done
lemma map_ignore2: "y \<notin> set list \<Longrightarrow> (map (\<lambda>xa. if xa = x then y else if xa = y then x else xa)
list) = (map (\<lambda>xa. if xa = x then y else xa) list)"
apply (simp add: map_ignore)
done
lemma map_ignore2': "y \<notin> set list \<Longrightarrow> (map (\<lambda>xa. if xa = y then x else if xa = x then y else xa)
list) = (map (\<lambda>xa. if xa = x then y else xa) list)"
apply (simp add: map_ignore)
apply force
done
lemma swap_distinct_helper: "\<lbrakk>x \<in> set list; y \<noteq> x; y \<notin> set list; distinct list\<rbrakk>
\<Longrightarrow> distinct (map (\<lambda>xa. if xa = x then y else xa) list)"
apply (induct list)
apply (simp add: map_ignore | elim conjE | intro impI conjI | blast)+
done
lemma swap_distinct: "x \<in> set list \<Longrightarrow> y \<in> set list \<Longrightarrow> distinct list \<Longrightarrow> distinct (list_swap list x y)"
apply (induct list)
apply (simp add: list_swap_def)+
apply (intro impI conjI,simp_all)
apply (simp add: map_ignore2 map_ignore2' swap_distinct_helper | elim conjE | force)+
done
lemma list_swap_none: "x \<notin> set list \<Longrightarrow> y \<notin> set list \<Longrightarrow> list_swap list x y = list"
apply (induct list)
apply (simp add: list_swap_def)+
apply blast
done
lemma list_swap_one: "x \<in> set list \<Longrightarrow> y \<notin> set list \<Longrightarrow> set (list_swap list x y) = insert y (set (list)) - {x}"
apply (induct list)
apply (simp add: list_swap_def)+
apply (intro impI conjI)
apply blast+
done
lemma list_swap_one': "x \<notin> set list \<Longrightarrow> y \<in> set list \<Longrightarrow> set (list_swap list x y) = insert x (set (list)) - {y}"
apply (induct list)
apply (simp add: list_swap_def)+
apply (intro impI conjI)
apply blast+
done
lemma in_swapped_list: "y \<in> set list \<Longrightarrow> x \<in> set (list_swap list x y)"
apply (case_tac "x \<in> set list")
apply (simp add: list_swap_both)
apply (simp add: list_swap_one')
apply (intro notI,simp)
done
lemma list_swap_empty : "(list_swap list x y = []) = (list = [])"
by(simp add: list_swap_def)
lemma distinct_after_in_list_antisym:
"distinct list \<Longrightarrow> after_in_list list a = Some b \<Longrightarrow> after_in_list list b \<noteq> Some a"
apply (induct list b arbitrary: a rule: after_in_list.induct)
apply simp+
apply (case_tac xs)
apply (clarsimp split: if_split_asm | intro impI conjI)+
done
lemma after_in_listD: "after_in_list list x = Some y \<Longrightarrow> \<exists>xs ys. list = xs @ (x # y # ys) \<and> x \<notin> set xs"
apply (induct list x arbitrary: a rule: after_in_list.induct)
apply (simp split: if_split_asm | elim exE | force)+
apply (rule_tac x="x # xsa" in exI)
apply simp
done
lemma list_swap_symmetric: "list_swap list a b = list_swap list b a"
apply (simp add: list_swap_def)
done
lemma list_swap_preserve_after:
"\<lbrakk>desta \<notin> set list; distinct list\<rbrakk>
\<Longrightarrow> after_in_list (list_swap list srca desta) desta =
after_in_list list srca"
apply (induct list desta rule: after_in_list.induct)
apply (simp add: list_swap_def)+
apply force
done
lemma list_swap_preserve_after':
"\<lbrakk>p \<noteq> desta; p \<noteq> srca; after_in_list list p = Some srca\<rbrakk>
\<Longrightarrow> after_in_list (list_swap list srca desta) p = Some desta"
apply (induct list p rule: after_in_list.induct)
apply (simp add: list_swap_def)+
apply force
done
lemma list_swap_does_swap:
"\<lbrakk>distinct list; after_in_list list desta = Some srca\<rbrakk>
\<Longrightarrow> after_in_list (list_swap list srca desta) srca = Some desta"
apply (induct list srca rule: after_in_list.induct)
apply (simp add: list_swap_def)+
apply (elim conjE)
apply (intro impI conjI,simp_all)
apply (frule after_in_list_in_list,simp)+
done
lemma list_swap_does_swap':
"distinct list \<Longrightarrow> after_in_list list srca = Some desta \<Longrightarrow>
after_in_list (list_swap list srca desta) srca =
after_in_list list desta"
apply (induct list srca rule: after_in_list.induct)
apply (simp add: list_swap_def)+
apply (elim conjE)
apply (intro impI conjI,simp_all)
apply (case_tac xs)
apply (clarsimp+)[2]
apply (case_tac xs)
apply clarsimp+
done
lemmas list_swap_preserve_after'' = list_swap_preserve_after'[simplified list_swap_symmetric]
lemma list_swap_preserve_Some_other:
"\<lbrakk>z \<noteq> desta; z \<noteq> srca; after_in_list list srca = Some z\<rbrakk>
\<Longrightarrow> after_in_list (list_swap list srca desta) desta = Some z"
apply (induct list srca rule: after_in_list.induct)
apply (simp add: list_swap_def)+
apply force
done
lemmas list_swap_preserve_Some_other' = list_swap_preserve_Some_other[simplified list_swap_symmetric]
lemma list_swap_preserve_None:
"\<lbrakk>after_in_list list srca = None\<rbrakk>
\<Longrightarrow> after_in_list (list_swap list desta srca) desta = None"
apply (induct list srca rule: after_in_list.induct)
apply (simp add: list_swap_def)+
apply force
done
lemma list_swap_preserve_None':
"\<lbrakk>after_in_list list srca = None\<rbrakk>
\<Longrightarrow> after_in_list (list_swap list srca desta) desta = None"
apply (subst list_swap_symmetric)
apply (erule list_swap_preserve_None)
done
lemma list_swap_preserve_after_None:
"\<lbrakk>p \<noteq> desta; p \<noteq> srca; after_in_list list p = None\<rbrakk>
\<Longrightarrow> after_in_list (list_swap list srca desta) p = None"
apply (induct list p rule: after_in_list.induct)
apply (simp add: list_swap_def)+
apply force
done
lemma list_swap_preserve_Some_other_distinct:
"\<lbrakk>distinct list; z \<noteq> desta; after_in_list list srca = Some z\<rbrakk>
\<Longrightarrow> after_in_list (list_swap list srca desta) desta = Some z"
apply (rule list_swap_preserve_Some_other)
apply simp+
apply (rule notI)
apply simp
apply (frule distinct_after_in_list_not_self[where src=srca])
apply simp+
done
lemma list_swap_preserve_separate:
"\<lbrakk>p \<noteq> desta; p \<noteq> srca; z \<noteq> desta; z \<noteq> srca; after_in_list list p = Some z\<rbrakk>
\<Longrightarrow> after_in_list (list_swap list srca desta) p = Some z"
apply (induct list p rule: after_in_list.induct)
apply (simp add: list_swap_def split: if_split_asm)+
apply (intro impI conjI)
apply simp+
done
fun after_in_list_list where
"after_in_list_list [] a = []" |
"after_in_list_list (x # xs) a = (if a = x then xs else after_in_list_list xs a)"
lemma after_in_list_list_in_list:
notes split_paired_All[simp del] split_paired_Ex[simp del]
shows "y \<in> set (after_in_list_list list x) \<Longrightarrow> y \<in> set list"
apply(induct list arbitrary:x y)
apply(simp)
apply(case_tac "x=a", simp+)
done
lemma range_nat_relation_induct:
"\<lbrakk> m = Suc (n + k) ; m < cap ; \<forall>n. Suc n < cap \<longrightarrow> P n (Suc n );
\<forall>i j k. i < cap \<and> j < cap \<and> k < cap \<longrightarrow> P i j \<longrightarrow> P j k \<longrightarrow> P i k \<rbrakk> \<Longrightarrow> P n m"
apply (clarify)
apply (thin_tac "m = t" for t)
apply (induct k)
apply (drule_tac x = "n" in spec)
apply (erule impE, simp, simp)
apply (frule_tac x = "Suc (n + k)" in spec)
apply (erule impE)
apply (simp only: add_Suc_right)
apply (rotate_tac 3, frule_tac x = n in spec)
apply (rotate_tac -1, drule_tac x = "Suc (n + k)" in spec)
apply (rotate_tac -1, drule_tac x = "Suc (n + Suc k) " in spec)
apply (erule impE)
apply (intro conjI)
apply (rule_tac y = "Suc (n + Suc k)" in less_trans)
apply (rule less_SucI)
apply (simp only: add_Suc_right)+
done
lemma indexed_trancl_as_set_helper : "\<lbrakk>p < q; q < length list; list ! p = a; list ! q = b;
q = Suc (p + k); Suc n < length list\<rbrakk>
\<Longrightarrow> (a, b) \<in> {(i, j). \<exists>p. Suc p <length list \<and> list ! p = i \<and> list ! Suc p = j}\<^sup>+"
apply (induct k arbitrary: p q a b)
apply (rule r_into_trancl,simp, rule_tac x = p in exI, simp)
apply (atomize)
apply (erule_tac x = p in allE, erule_tac x = "Suc (p + k)" in allE, erule_tac x = "a" in allE, erule_tac x = "list ! Suc (p + k)" in allE)
apply (elim impE)
apply (simp)+
apply (rule_tac b = "list ! Suc (p + k)" in trancl_into_trancl)
apply (simp)+
apply (rule_tac x = "Suc (p + k)" in exI, simp)
done
lemma indexed_trancl_as_set: "distinct list \<Longrightarrow> {(i, j). \<exists> p q. p < q \<and> q < length list \<and> list ! p = i \<and> list ! q = j }
= {(i, j). \<exists> p. Suc p < length list \<and> list ! p = i \<and> list ! Suc p = j }\<^sup>+"
apply (rule equalityI)
apply (rule subsetI)
apply (case_tac x, simp)
apply (elim exE conjE)
apply (frule less_imp_Suc_add)
apply (erule exE)
apply (rule_tac cap = "length list" and m = q and n = p and k = k in range_nat_relation_induct)
apply (simp)
apply (simp)
apply (rule allI, rule impI)
apply (rule_tac p = p and q = q and k = k and n = n in indexed_trancl_as_set_helper)
apply (simp)+
apply (rule subsetI)
apply (case_tac x, simp)
apply (erule trancl_induct)
apply (simp, elim exE conjE)
apply (rule_tac x = p in exI, rule_tac x = "Suc p" in exI, simp)
apply (simp)
apply (rotate_tac 4, erule exE, rule_tac x = p in exI)
apply (erule exE, rule_tac x = "Suc pa" in exI)
apply (intro conjI)
defer
apply (simp)
apply (erule exE, simp)
apply (simp)
apply (erule exE)
apply (subgoal_tac "pa = q")
apply (simp)
apply (frule_tac xs = list and i = pa and j = q in nth_eq_iff_index_eq)
apply (simp)+
done
lemma indexed_trancl_irrefl: "distinct list \<Longrightarrow> (x,x) \<notin> {(i, j). \<exists> p. Suc p < length list \<and> list ! p = i \<and> list ! Suc p = j }\<^sup>+"
apply (frule indexed_trancl_as_set [THEN sym])
apply (simp)
apply (intro allI impI notI)
apply (frule_tac xs = list and i = p and j = q in nth_eq_iff_index_eq)
apply (simp+)
done
lemma after_in_list_trancl_indexed_trancl: "distinct list \<Longrightarrow> {(p, q). after_in_list list p = Some q}\<^sup>+ = {(i, j). \<exists> p. Suc p < length list \<and> list ! p = i \<and> list ! Suc p = j }\<^sup>+"
apply (rule_tac f = "\<lambda> x. x\<^sup>+" in arg_cong)
apply (intro equalityI subsetI)
apply (case_tac x, simp)
apply (induct list)
apply (simp)
apply (case_tac "a = aa")
apply (rule_tac x = 0 in exI, case_tac list, simp, simp)
apply (case_tac list, simp, simp)
apply (atomize, drule_tac x = x in spec, drule_tac x = aa in spec, drule_tac x = b in spec, simp)
apply (erule exE, rule_tac x = "Suc p" in exI, simp)
apply (case_tac x, simp)
apply (induct list)
apply (simp)
apply (case_tac "a = aa")
apply (erule exE)
apply (subgoal_tac "p = 0")
apply (case_tac list, simp, simp)
apply (subgoal_tac "distinct (aa # list)")
apply (frule_tac i = 0 and j = p and xs = "aa # list" in nth_eq_iff_index_eq)
apply (simp, simp, simp, simp)
apply (atomize, drule_tac x = x in spec, drule_tac x = aa in spec, drule_tac x = b in spec, simp)
apply (drule mp)
apply (erule exE)
apply (case_tac p, simp, simp)
apply (rule_tac x = nat in exI, simp)
apply (case_tac list, simp, simp)
done
lemma distinct_after_in_list_not_self_trancl:
notes split_paired_All[simp del] split_paired_Ex[simp del]
shows "distinct list \<Longrightarrow> (x, x) \<notin> {(p, q). after_in_list list p = Some q}\<^sup>+"
by (simp add: after_in_list_trancl_indexed_trancl indexed_trancl_irrefl)
lemma distinct_after_in_list_in_list_trancl:
notes split_paired_All[simp del] split_paired_Ex[simp del]
shows "\<lbrakk>distinct list; (x, y) \<in> {(p, q). after_in_list list q = Some p}\<^sup>+\<rbrakk> \<Longrightarrow> x \<in> set list"
by(erule tranclE2, (drule CollectD, simp, drule after_in_list_in_list, simp)+)
lemma after_in_list_trancl_prepend:
notes split_paired_All[simp del] split_paired_Ex[simp del]
shows "\<lbrakk>distinct (y # list); x \<in> set list\<rbrakk> \<Longrightarrow> (y, x) \<in> {(n, p). after_in_list (y # list) n = Some p}\<^sup>+"
apply(induct list arbitrary:x y)
apply(simp)
apply(case_tac "x=a")
apply(rule r_into_trancl)
apply(simp)
apply(drule set_ConsD)
apply(elim disjE)
apply(simp)
apply(atomize)
apply(drule_tac x=x in spec)
apply(drule_tac x=y in spec)
apply(drule_tac mp)
apply(simp)
apply(drule_tac mp)
apply(simp)
apply(erule trancl_induct)
apply(drule CollectD, simp)
apply(rule_tac b = a in trancl_into_trancl2)
apply(simp)
apply(rule r_into_trancl)
apply(rule_tac a = "(a,ya)" in CollectI)
apply(clarsimp)
apply(case_tac list)
apply(simp)
apply(simp)
apply(case_tac "ya=a")
apply(drule CollectD)
apply(simp del:after_in_list.simps)
apply(drule after_in_list_in_list')
apply(simp)
apply(rule_tac b=ya in trancl_into_trancl)
apply(simp)
apply(drule CollectD)
apply(rule CollectI)
apply(case_tac "ya=y")
apply(frule_tac x=y in distinct_after_in_list_not_self_trancl)
apply(simp)
apply(case_tac list)
apply(simp)
apply(simp)
done
lemma after_in_list_append_not_hd:
notes split_paired_All[simp del] split_paired_Ex[simp del]
shows "a \<noteq> x \<Longrightarrow> after_in_list (a # list) x = after_in_list list x"
by (case_tac list, simp, simp)
lemma trancl_Collect_rev:
"(a, b) \<in> {(x, y). P x y}\<^sup>+ \<Longrightarrow> (b, a) \<in> {(x, y). P y x}\<^sup>+"
apply(induct rule: trancl_induct)
apply(fastforce intro: trancl_into_trancl2)+
done
lemma prepend_after_in_list_distinct : "distinct (a # list) \<Longrightarrow> {(next, p). after_in_list (a # list) p = Some next}\<^sup>+ =
{(next, p). after_in_list (list) p = Some next}\<^sup>+ \<union>
set list \<times> {a} "
apply (rule equalityI)
(* \<subseteq> direction *)
apply (rule subsetI, case_tac x)
apply (simp)
apply (erule trancl_induct)
(* base case *)
apply (drule CollectD, simp)
apply (case_tac list, simp)
apply (simp split:if_split_asm)
apply (rule r_into_trancl)
apply (rule CollectI, simp)
(* Inductive case *)
apply (drule CollectD, simp)
apply (erule disjE)
apply (case_tac "a \<noteq> z")
apply (rule disjI1)
apply (rule_tac b =y in trancl_into_trancl)
apply (simp, case_tac list, simp, simp)
apply (simp)
apply (rule disjI2)
apply (erule conjE)
apply (frule_tac x = aa and y = y in distinct_after_in_list_in_list_trancl)
apply (simp)
apply (simp)
apply (subgoal_tac "after_in_list (a # list) z \<noteq> Some a", simp)
apply (rule_tac hd_not_after_in_list, simp, simp)
(* \<supseteq> direction *)
apply (rule subsetI)
apply (case_tac x)
apply (simp)
apply (erule disjE)
(* transitive case *)
apply (erule tranclE2)
apply (drule CollectD, simp)
apply (subgoal_tac "b \<noteq> a")
apply (rule r_into_trancl)
apply (rule CollectI, simp)
apply (case_tac list, simp, simp)
apply (frule after_in_list_in_list')
apply (erule conjE)
apply (blast)
apply (rule_tac y = c in trancl_trans)
apply (subgoal_tac "c \<noteq> a")
apply (case_tac list, simp, simp)
apply (case_tac "aaa = aa")
apply (rule r_into_trancl)
apply (rule CollectI, simp)
apply (rule r_into_trancl)
apply (rule CollectI, simp)
apply (erule CollectE, simp)
apply (frule after_in_list_in_list')
apply (erule conjE, blast)
apply (erule trancl_induct)
apply (simp)
apply (rule r_into_trancl, simp)
apply (subgoal_tac "y \<noteq> a")
apply (case_tac list, simp, simp)
apply (rotate_tac 3)
apply (frule after_in_list_in_list')
apply (erule conjE, blast)
apply (rule_tac b = y in trancl_into_trancl, simp)
apply (rule CollectI, simp)
apply (subgoal_tac "a \<noteq> z")
apply (case_tac list, simp, simp)
apply (rotate_tac 3)
apply (frule after_in_list_in_list')
apply (blast)
(* not so transitive case *)
apply (subgoal_tac "distinct (a # list)")