-
Notifications
You must be signed in to change notification settings - Fork 0
/
LemmaBucket.thy
451 lines (378 loc) · 22.9 KB
/
LemmaBucket.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
(*
* Copyright 2014, NICTA
*
* This software may be distributed and modified according to the terms of
* the BSD 2-Clause license. Note that NO WARRANTY is provided.
* See "LICENSE_BSD2.txt" for details.
*
* @TAG(NICTA_BSD)
*)
theory LemmaBucket
imports
HaskellLemmaBucket
SpecValid_R
SubMonadLib
begin
lemma corres_underlying_trivial:
"\<lbrakk> nf' \<Longrightarrow> no_fail P' f \<rbrakk> \<Longrightarrow> corres_underlying Id nf nf' op = \<top> P' f f"
by (auto simp add: corres_underlying_def Id_def no_fail_def)
lemma hoare_spec_gen_asm:
"\<lbrakk> F \<Longrightarrow> s \<turnstile> \<lbrace>P\<rbrace> f \<lbrace>Q\<rbrace> \<rbrakk> \<Longrightarrow> s \<turnstile> \<lbrace>P and K F\<rbrace> f \<lbrace>Q\<rbrace>"
"\<lbrakk> F \<Longrightarrow> s \<turnstile> \<lbrace>P\<rbrace> f' \<lbrace>Q\<rbrace>,\<lbrace>E\<rbrace> \<rbrakk> \<Longrightarrow> s \<turnstile> \<lbrace>P and K F\<rbrace> f' \<lbrace>Q\<rbrace>,\<lbrace>E\<rbrace>"
unfolding spec_valid_def spec_validE_def validE_def
apply (clarsimp simp only: pred_conj_def conj_assoc[symmetric]
intro!: hoare_gen_asm[unfolded pred_conj_def])+
done
lemma spec_validE_fail:
"s \<turnstile> \<lbrace>P\<rbrace> fail \<lbrace>Q\<rbrace>,\<lbrace>E\<rbrace>"
by wp
lemma mresults_fail: "mresults fail = {}"
by (simp add: mresults_def fail_def)
lemma gets_symb_exec_l:
"corres_underlying sr nf nf' dc P P' (gets f) (return x)"
by (simp add: corres_underlying_def return_def simpler_gets_def split_def)
lemmas mapM_x_wp_inv = mapM_x_wp[where S=UNIV, simplified]
lemma mapM_wp_inv:
"(\<And>x. \<lbrace>P\<rbrace> f x \<lbrace>\<lambda>rv. P\<rbrace>) \<Longrightarrow> \<lbrace>P\<rbrace> mapM f xs \<lbrace>\<lambda>rv. P\<rbrace>"
apply (rule valid_return_unit)
apply (fold mapM_x_mapM)
apply (erule mapM_x_wp_inv)
done
lemmas mapM_x_wp' = mapM_x_wp [OF _ subset_refl]
lemma corres_underlying_similar:
"\<lbrakk> a = a'; b = b'; nf' \<Longrightarrow> no_fail \<top> (f a b) \<rbrakk>
\<Longrightarrow> corres_underlying Id nf nf' dc \<top> \<top> (f a b) (f a' b')"
by (simp add: corres_underlying_def no_fail_def, blast)
lemma corres_underlying_gets_pre_lhs:
"(\<And>x. corres_underlying S nf nf' r (P x) P' (g x) g') \<Longrightarrow>
corres_underlying S nf nf' r (\<lambda>s. P (f s) s) P' (gets f >>= (\<lambda>x. g x)) g'"
apply (simp add: simpler_gets_def bind_def split_def corres_underlying_def)
apply force
done
lemma mapM_x_inv_wp:
assumes x: "\<And>s. I s \<Longrightarrow> Q s"
assumes y: "\<And>x. x \<in> set xs \<Longrightarrow> \<lbrace>P\<rbrace> m x \<lbrace>\<lambda>rv. I\<rbrace>"
assumes z: "\<And>s. I s \<Longrightarrow> P s"
shows "\<lbrace>I\<rbrace> mapM_x m xs \<lbrace>\<lambda>rv. Q\<rbrace>"
apply (rule hoare_post_imp)
apply (erule x)
apply (rule mapM_x_wp)
apply (rule hoare_pre_imp [OF _ y])
apply (erule z)
apply assumption
apply simp
done
lemma mapM_x_accumulate_checks':
assumes P: "\<And>x. x \<in> set xs' \<Longrightarrow> \<lbrace>\<top>\<rbrace> f x \<lbrace>\<lambda>rv. P x\<rbrace>"
assumes P': "\<And>x y. \<lbrakk> x \<in> set xs'; y \<in> set xs' \<rbrakk>
\<Longrightarrow> \<lbrace>P y\<rbrace> f x \<lbrace>\<lambda>rv. P y\<rbrace>"
shows "set xs \<subseteq> set xs' \<Longrightarrow>
\<lbrace>\<top>\<rbrace> mapM_x f xs \<lbrace>\<lambda>rv s. \<forall>x \<in> set xs. P x s\<rbrace>"
apply (induct xs)
apply (simp add: mapM_x_Nil)
apply (simp add: mapM_x_Cons)
apply (rule hoare_pre)
apply (wp mapM_x_wp'[OF P'])
apply blast
apply simp
apply assumption
apply simp
apply (rule P)
apply simp
apply simp
done
lemmas mapM_x_accumulate_checks
= mapM_x_accumulate_checks'[OF _ _ subset_refl]
(* Other *)
lemma isRight_rel_sum_comb2:
"\<lbrakk> (f \<oplus> r) v v'; isRight v' \<rbrakk>
\<Longrightarrow> isRight v \<and> r (theRight v) (theRight v')"
by (clarsimp simp: isRight_def)
lemma isRight_case_sum: "isRight x \<Longrightarrow> case_sum f g x = g (theRight x)"
by (clarsimp simp add: isRight_def)
lemma enumerate_append:"enumerate i (xs @ ys) = enumerate i xs @ enumerate (i + length xs) ys"
apply (induct xs arbitrary:ys i)
apply clarsimp+
done
lemma enumerate_bound:"(a, b) \<in> set (enumerate n xs) \<Longrightarrow> a < n + length xs"
by (metis add.commute in_set_enumerate_eq prod.sel(1))
lemma enumerate_exceed:"(n + length xs, b) \<notin> set (enumerate n xs)"
by (metis enumerate_bound less_not_refl)
lemma all_pair_unwrap:"(\<forall>a. P (fst a) (snd a)) = (\<forall>a b. P a b)"
by force
lemma if_fold[simp]:"(if P then Q else if P then R else S) = (if P then Q else S)"
by presburger
lemma disjoint_subset_both:"\<lbrakk>A' \<subseteq> A; B' \<subseteq> B; A \<inter> B = {}\<rbrakk> \<Longrightarrow> A' \<inter> B' = {}"
by blast
lemma union_split: "\<lbrakk>A \<inter> C = {}; B \<inter> C = {}\<rbrakk> \<Longrightarrow> (A \<union> B) \<inter> C = {}"
by (simp add: inf_sup_distrib2)
lemma dom_expand: "dom (\<lambda>x. if P x then Some y else None) = {x. P x}"
using if_option_Some by fastforce
lemma range_translate: "(range f = range g) = ((\<forall>x. \<exists>y. f x = g y) \<and> (\<forall>x. \<exists>y. f y = g x))"
by (rule iffI,
rule conjI,
clarsimp,
blast,
clarsimp,
metis f_inv_into_f range_eqI,
clarsimp,
subst set_eq_subset,
rule conjI,
clarsimp,
rename_tac arg,
erule_tac x=arg and P="\<lambda>x. (\<exists>y. f x = g y)" in allE,
clarsimp,
clarsimp,
rename_tac arg,
erule_tac x=arg and P="\<lambda>x. (\<exists>y. f y = g x)" in allE,
clarsimp,
metis range_eqI)
lemma ran_expand: "\<exists>x. P x \<Longrightarrow> ran (\<lambda>x. if P x then Some y else None) = {y}"
by (rule subset_antisym,
(clarsimp simp:ran_def)+)
lemma map_upd_expand: "f(x \<mapsto> y) = f ++ (\<lambda>z. if z = x then Some y else None)"
by (rule ext, rename_tac w,
case_tac "w = x",
simp,
simp add:map_add_def)
lemma map_upd_subI: "\<lbrakk>f \<subseteq>\<^sub>m g; f x = None\<rbrakk> \<Longrightarrow> f \<subseteq>\<^sub>m g(x \<mapsto> y)"
by (rule_tac f="\<lambda>i. if i = x then Some y else None" in map_add_le_mapE,
simp add:map_le_def,
rule ballI, rename_tac a,
rule conjI,
erule_tac x=x in ballE,
clarsimp,
erule disjE,
clarsimp,
clarsimp simp:map_add_def,
clarsimp,
erule disjE,
clarsimp,
clarsimp simp:map_add_def,
clarsimp simp:map_add_def,
erule_tac x=a in ballE,
erule disjE,
(case_tac "g a"; simp_all),
clarsimp+)
lemma all_ext: "\<forall>x. f x = g x \<Longrightarrow> f = g"
by presburger
lemma conjI2: "\<lbrakk>B; B \<longrightarrow> A\<rbrakk> \<Longrightarrow> A \<and> B"
by auto
(* Trivial lemmas for dealing with messy CNode obligations. *)
lemma Least2: "\<lbrakk>\<not>P 0; \<not>P 1; P (2::nat)\<rbrakk> \<Longrightarrow> Least P = 2"
by (simp add: Least_Suc eval_nat_numeral(2) eval_nat_numeral(3))
lemma Least3: "\<lbrakk>\<not>P 0; \<not>P 1; \<not>P 2; P (3::nat)\<rbrakk> \<Longrightarrow> Least P = 3"
by (simp add: Least_Suc eval_nat_numeral(2) eval_nat_numeral(3))
lemma Least4: "\<lbrakk>\<not>P 0; \<not>P 1; \<not>P 2; \<not>P 3; P (4::nat)\<rbrakk> \<Longrightarrow> Least P = 4"
by (simp add: Least_Suc eval_nat_numeral(2) eval_nat_numeral(3))
lemma Least5: "\<lbrakk>\<not>P 0; \<not>P 1; \<not>P 2; \<not>P 3; \<not>P 4; P (5::nat)\<rbrakk> \<Longrightarrow> Least P = 5"
by (simp add: Least_Suc eval_nat_numeral(2) eval_nat_numeral(3))
lemma Least6: "\<lbrakk>\<not>P 0; \<not>P 1; \<not>P 2; \<not>P 3; \<not>P 4; \<not>P 5; P (6::nat)\<rbrakk> \<Longrightarrow> Least P = 6"
by (simp add: Least_Suc eval_nat_numeral(2) eval_nat_numeral(3))
lemma Least7: "\<lbrakk>\<not>P 0; \<not>P 1; \<not>P 2; \<not>P 3; \<not>P 4; \<not>P 5; \<not>P 6; P (7::nat)\<rbrakk> \<Longrightarrow> Least P = 7"
by (simp add: Least_Suc eval_nat_numeral(2) eval_nat_numeral(3))
lemma Least8: "\<lbrakk>\<not>P 0; \<not>P 1; \<not>P 2; \<not>P 3; \<not>P 4; \<not>P 5; \<not>P 6; \<not>P 7; P (8::nat)\<rbrakk> \<Longrightarrow> Least P = 8"
by (simp add: Least_Suc eval_nat_numeral(2) eval_nat_numeral(3))
lemma Least9: "\<lbrakk>\<not>P 0; \<not>P 1; \<not>P 2; \<not>P 3; \<not>P 4; \<not>P 5; \<not>P 6; \<not>P 7; \<not>P 8; P (9::nat)\<rbrakk> \<Longrightarrow> Least P = 9"
by (simp add: Least_Suc eval_nat_numeral(2) eval_nat_numeral(3))
lemma Least10: "\<lbrakk>\<not>P 0; \<not>P 1; \<not>P 2; \<not>P 3; \<not>P 4; \<not>P 5; \<not>P 6; \<not>P 7; \<not>P 8; \<not>P 9; P (10::nat)\<rbrakk> \<Longrightarrow> Least P
= 10"
by (simp add: Least_Suc eval_nat_numeral(2) eval_nat_numeral(3))
lemma Least11: "\<lbrakk>\<not>P 0; \<not>P 1; \<not>P 2; \<not>P 3; \<not>P 4; \<not>P 5; \<not>P 6; \<not>P 7; \<not>P 8; \<not>P 9; \<not>P 10; P (11::nat)\<rbrakk> \<Longrightarrow>
Least P = 11"
by (simp add: Least_Suc eval_nat_numeral(2) eval_nat_numeral(3))
lemma Least12: "\<lbrakk>\<not>P 0; \<not>P 1; \<not>P 2; \<not>P 3; \<not>P 4; \<not>P 5; \<not>P 6; \<not>P 7; \<not>P 8; \<not>P 9; \<not>P 10; \<not>P 11; P
(12::nat)\<rbrakk> \<Longrightarrow> Least P = 12"
by (simp add: Least_Suc eval_nat_numeral(2) eval_nat_numeral(3))
lemma Least13: "\<lbrakk>\<not>P 0; \<not>P 1; \<not>P 2; \<not>P 3; \<not>P 4; \<not>P 5; \<not>P 6; \<not>P 7; \<not>P 8; \<not>P 9; \<not>P 10; \<not>P 11; \<not>P 12; P
(13::nat)\<rbrakk> \<Longrightarrow> Least P = 13"
by (simp add: Least_Suc eval_nat_numeral(2) eval_nat_numeral(3))
lemma Least14: "\<lbrakk>\<not>P 0; \<not>P 1; \<not>P 2; \<not>P 3; \<not>P 4; \<not>P 5; \<not>P 6; \<not>P 7; \<not>P 8; \<not>P 9; \<not>P 10; \<not>P 11; \<not>P 12; \<not>P
13; P (14::nat)\<rbrakk> \<Longrightarrow> Least P = 14"
by (simp add: Least_Suc eval_nat_numeral(2) eval_nat_numeral(3))
lemma Least15: "\<lbrakk>\<not>P 0; \<not>P 1; \<not>P 2; \<not>P 3; \<not>P 4; \<not>P 5; \<not>P 6; \<not>P 7; \<not>P 8; \<not>P 9; \<not>P 10; \<not>P 11; \<not>P 12; \<not>P
13; \<not>P 14; P (15::nat)\<rbrakk> \<Longrightarrow> Least P = 15"
by (simp add: Least_Suc eval_nat_numeral(2) eval_nat_numeral(3))
lemma Least16: "\<lbrakk>\<not>P 0; \<not>P 1; \<not>P 2; \<not>P 3; \<not>P 4; \<not>P 5; \<not>P 6; \<not>P 7; \<not>P 8; \<not>P 9; \<not>P 10; \<not>P 11; \<not>P 12; \<not>P
13; \<not>P 14; \<not>P 15; P (16::nat)\<rbrakk> \<Longrightarrow> Least P = 16"
by (simp add: Least_Suc eval_nat_numeral(2) eval_nat_numeral(3))
lemma Least17: "\<lbrakk>\<not>P 0; \<not>P 1; \<not>P 2; \<not>P 3; \<not>P 4; \<not>P 5; \<not>P 6; \<not>P 7; \<not>P 8; \<not>P 9; \<not>P 10; \<not>P 11; \<not>P 12; \<not>P
13; \<not>P 14; \<not>P 15; \<not>P 16; P (17::nat)\<rbrakk> \<Longrightarrow> Least P = 17"
by (simp add: Least_Suc eval_nat_numeral(2) eval_nat_numeral(3))
lemma Least18: "\<lbrakk>\<not>P 0; \<not>P 1; \<not>P 2; \<not>P 3; \<not>P 4; \<not>P 5; \<not>P 6; \<not>P 7; \<not>P 8; \<not>P 9; \<not>P 10; \<not>P 11; \<not>P 12; \<not>P
13; \<not>P 14; \<not>P 15; \<not>P 16; \<not>P 17; P (18::nat)\<rbrakk> \<Longrightarrow> Least P = 18"
by (simp add: Least_Suc eval_nat_numeral(2) eval_nat_numeral(3))
lemma Least19: "\<lbrakk>\<not>P 0; \<not>P 1; \<not>P 2; \<not>P 3; \<not>P 4; \<not>P 5; \<not>P 6; \<not>P 7; \<not>P 8; \<not>P 9; \<not>P 10; \<not>P 11; \<not>P 12; \<not>P
13; \<not>P 14; \<not>P 15; \<not>P 16; \<not>P 17; \<not>P 18; P (19::nat)\<rbrakk> \<Longrightarrow> Least P = 19"
by (simp add: Least_Suc eval_nat_numeral(2) eval_nat_numeral(3))
lemma Least20: "\<lbrakk>\<not>P 0; \<not>P 1; \<not>P 2; \<not>P 3; \<not>P 4; \<not>P 5; \<not>P 6; \<not>P 7; \<not>P 8; \<not>P 9; \<not>P 10; \<not>P 11; \<not>P 12; \<not>P
13; \<not>P 14; \<not>P 15; \<not>P 16; \<not>P 17; \<not>P 18; \<not>P 19; P (20::nat)\<rbrakk> \<Longrightarrow> Least P = 20"
by (simp add: Least_Suc eval_nat_numeral(2) eval_nat_numeral(3))
lemma Least21: "\<lbrakk>\<not>P 0; \<not>P 1; \<not>P 2; \<not>P 3; \<not>P 4; \<not>P 5; \<not>P 6; \<not>P 7; \<not>P 8; \<not>P 9; \<not>P 10; \<not>P 11; \<not>P 12; \<not>P
13; \<not>P 14; \<not>P 15; \<not>P 16; \<not>P 17; \<not>P 18; \<not>P 19; \<not>P 20; P (21::nat)\<rbrakk> \<Longrightarrow> Least P = 21"
by (simp add: Least_Suc eval_nat_numeral(2) eval_nat_numeral(3))
lemma Least22: "\<lbrakk>\<not>P 0; \<not>P 1; \<not>P 2; \<not>P 3; \<not>P 4; \<not>P 5; \<not>P 6; \<not>P 7; \<not>P 8; \<not>P 9; \<not>P 10; \<not>P 11; \<not>P 12; \<not>P
13; \<not>P 14; \<not>P 15; \<not>P 16; \<not>P 17; \<not>P 18; \<not>P 19; \<not>P 20; \<not>P 21; P (22::nat)\<rbrakk> \<Longrightarrow> Least P
= 22"
by (simp add: Least_Suc eval_nat_numeral(2) eval_nat_numeral(3))
lemma Least23: "\<lbrakk>\<not>P 0; \<not>P 1; \<not>P 2; \<not>P 3; \<not>P 4; \<not>P 5; \<not>P 6; \<not>P 7; \<not>P 8; \<not>P 9; \<not>P 10; \<not>P 11; \<not>P 12; \<not>P
13; \<not>P 14; \<not>P 15; \<not>P 16; \<not>P 17; \<not>P 18; \<not>P 19; \<not>P 20; \<not>P 21; \<not>P 22; P (23::nat)\<rbrakk> \<Longrightarrow>
Least P = 23"
by (simp add: Least_Suc eval_nat_numeral(2) eval_nat_numeral(3))
lemma Least24: "\<lbrakk>\<not>P 0; \<not>P 1; \<not>P 2; \<not>P 3; \<not>P 4; \<not>P 5; \<not>P 6; \<not>P 7; \<not>P 8; \<not>P 9; \<not>P 10; \<not>P 11; \<not>P 12; \<not>P
13; \<not>P 14; \<not>P 15; \<not>P 16; \<not>P 17; \<not>P 18; \<not>P 19; \<not>P 20; \<not>P 21; \<not>P 22; \<not>P 23; P
(24::nat)\<rbrakk> \<Longrightarrow> Least P = 24"
by (simp add: Least_Suc eval_nat_numeral(2) eval_nat_numeral(3))
lemma Least25: "\<lbrakk>\<not>P 0; \<not>P 1; \<not>P 2; \<not>P 3; \<not>P 4; \<not>P 5; \<not>P 6; \<not>P 7; \<not>P 8; \<not>P 9; \<not>P 10; \<not>P 11; \<not>P 12; \<not>P
13; \<not>P 14; \<not>P 15; \<not>P 16; \<not>P 17; \<not>P 18; \<not>P 19; \<not>P 20; \<not>P 21; \<not>P 22; \<not>P 23; \<not>P 24; P
(25::nat)\<rbrakk> \<Longrightarrow> Least P = 25"
by (simp add: Least_Suc eval_nat_numeral(2) eval_nat_numeral(3))
lemma Least26: "\<lbrakk>\<not>P 0; \<not>P 1; \<not>P 2; \<not>P 3; \<not>P 4; \<not>P 5; \<not>P 6; \<not>P 7; \<not>P 8; \<not>P 9; \<not>P 10; \<not>P 11; \<not>P 12; \<not>P
13; \<not>P 14; \<not>P 15; \<not>P 16; \<not>P 17; \<not>P 18; \<not>P 19; \<not>P 20; \<not>P 21; \<not>P 22; \<not>P 23; \<not>P 24; \<not>P
25; P (26::nat)\<rbrakk> \<Longrightarrow> Least P = 26"
by (simp add: Least_Suc eval_nat_numeral(2) eval_nat_numeral(3))
lemma Least27: "\<lbrakk>\<not>P 0; \<not>P 1; \<not>P 2; \<not>P 3; \<not>P 4; \<not>P 5; \<not>P 6; \<not>P 7; \<not>P 8; \<not>P 9; \<not>P 10; \<not>P 11; \<not>P 12; \<not>P
13; \<not>P 14; \<not>P 15; \<not>P 16; \<not>P 17; \<not>P 18; \<not>P 19; \<not>P 20; \<not>P 21; \<not>P 22; \<not>P 23; \<not>P 24; \<not>P
25; \<not>P 26; P (27::nat)\<rbrakk> \<Longrightarrow> Least P = 27"
by (simp add: Least_Suc eval_nat_numeral(2) eval_nat_numeral(3))
lemma Least28: "\<lbrakk>\<not>P 0; \<not>P 1; \<not>P 2; \<not>P 3; \<not>P 4; \<not>P 5; \<not>P 6; \<not>P 7; \<not>P 8; \<not>P 9; \<not>P 10; \<not>P 11; \<not>P 12; \<not>P
13; \<not>P 14; \<not>P 15; \<not>P 16; \<not>P 17; \<not>P 18; \<not>P 19; \<not>P 20; \<not>P 21; \<not>P 22; \<not>P 23; \<not>P 24; \<not>P
25; \<not>P 26; \<not>P 27; P (28::nat)\<rbrakk> \<Longrightarrow> Least P = 28"
by (simp add: Least_Suc eval_nat_numeral(2) eval_nat_numeral(3))
lemma map_add_discard: "\<not> cond x \<Longrightarrow> (f ++ (\<lambda>x. if cond x then (g x) else None)) x = f x"
by (simp add: map_add_def)
lemma dom_split:"\<lbrakk>\<forall>x \<in> S. \<exists>y. f x = Some y; \<forall>x. x \<notin> S \<longrightarrow> f x = None\<rbrakk> \<Longrightarrow> dom f = S"
by (auto simp:dom_def)
lemma map_set_in: "x \<in> f ` S = (\<exists>y\<in>S. f y = x)"
by blast
lemma map_length_split:
"map (length \<circ> (\<lambda>(a, b). P a b # map (f a b) (Q a b))) xs = map (\<lambda>(a, b). 1 + length (Q a b)) xs"
by clarsimp
lemma sum_suc: "(\<Sum>x \<leftarrow> xs. Suc (f x)) = length xs + (\<Sum>x \<leftarrow> xs. f x)"
apply (induct xs)
by clarsimp+
lemma sum_suc_pair: "(\<Sum>(a, b) \<leftarrow> xs. Suc (f a b)) = length xs + (\<Sum>(a, b) \<leftarrow> xs. f a b)"
apply (induct xs)
by clarsimp+
lemma fold_add_sum: "fold op + ((map (\<lambda>(a, b). f a b) xs)::nat list) 0 = (\<Sum>(a, b) \<leftarrow> xs. f a b)"
apply (subst fold_plus_sum_list_rev)
apply (subst sum_list_rev)
by clarsimp
lemma set_of_enumerate:"card (set (enumerate n xs)) = length xs"
by (metis distinct_card distinct_enumerate length_enumerate)
lemma collapse_fst: "fst ` (\<lambda>x. (f x, g x)) ` s = f ` s"
by force
lemma collapse_fst2: "fst ` (\<lambda>(x, y). (f x, g y)) ` s = (\<lambda>x. f (fst x)) ` s"
by force
lemma collapse_fst3: "(\<lambda>x. f (fst x)) ` set (enumerate n xs) = f ` set [n..<n + length xs]"
by (metis image_image list.set_map map_fst_enumerate)
lemma card_of_dom_bounded:
fixes f :: "'a \<Rightarrow> 'b option"
assumes "finite (UNIV::'a set)"
shows "card (dom f) \<le> CARD('a)"
by (simp add: assms card_mono)
lemma third_in: "(a, b, c) \<in> S \<Longrightarrow> c \<in> (snd \<circ> snd) ` S"
by (metis (erased, hide_lams) map_set_in image_comp snd_conv)
lemma third_in2: "(a \<in> (snd \<circ> snd) ` (set (enumerate i xs))) = (a \<in> snd ` (set xs))"
by (metis map_map map_snd_enumerate set_map)
lemma map_of_enum: "map_of (enumerate n xs) x = Some y \<Longrightarrow> y \<in> set xs"
apply (clarsimp)
by (metis enumerate_eq_zip in_set_zipE)
lemma map_of_append:
"(map_of xs ++ map_of ys) x = (case map_of ys x of None \<Rightarrow> map_of xs x | Some x' \<Rightarrow> Some x')"
by (simp add: map_add_def)
lemma map_of_append2:
"(map_of xs ++ map_of ys ++ map_of zs) x =
(case map_of zs x of None \<Rightarrow> (case map_of ys x of None \<Rightarrow> map_of xs x
| Some x' \<Rightarrow> Some x')
| Some x' \<Rightarrow> Some x')"
by (simp add: map_add_def)
lemma map_of_in_set_map: "map_of (map (\<lambda>(n, y). (f n, y)) xs) x = Some z \<Longrightarrow> z \<in> snd ` set xs"
proof -
assume "map_of (map (\<lambda>(n, y). (f n, y)) xs) x = Some z"
hence "(x, z) \<in> (\<lambda>(uu, y). (f uu, y)) ` set xs" using map_of_SomeD by fastforce
thus "z \<in> snd ` set xs" using map_set_in by fastforce
qed
lemma pair_in_enum: "(a, b) \<in> set (enumerate x ys) \<Longrightarrow> b \<in> set ys"
by (metis enumerate_eq_zip in_set_zip2)
lemma distinct_map_via_ran: "distinct (map fst xs) \<Longrightarrow> ran (map_of xs) = set (map snd xs)"
apply (cut_tac xs="map fst xs" and ys="map snd xs" in ran_map_of_zip[symmetric])
apply clarsimp+
by (simp add: ran_distinct)
lemma in_ran_in_set: "x \<in> ran (map_of xs) \<Longrightarrow> x \<in> set (map snd xs)"
by (metis (mono_tags, hide_lams) map_set_in map_of_SomeD ranE set_map snd_conv)
lemma in_ran_map_app: "x \<in> ran (xs ++ ys ++ zs) \<Longrightarrow> x \<in> ran xs \<or> x \<in> ran ys \<or> x \<in> ran zs"
proof -
assume a1: "x \<in> ran (xs ++ ys ++ zs)"
obtain bb :: "'a \<Rightarrow> ('b \<Rightarrow> 'a option) \<Rightarrow> 'b" where
"\<forall>x0 x1. (\<exists>v2. x1 v2 = Some x0) = (x1 (bb x0 x1) = Some x0)"
by moura
hence f2: "\<forall>f a. (\<not> (\<exists>b. f b = Some a) \<or> f (bb a f) = Some a) \<and> ((\<exists>b. f b = Some a) \<or> (\<forall>b. f b \<noteq> Some a))"
by blast
have "\<exists>b. (xs ++ ys ++ zs) b = Some x"
using a1 by (simp add: ran_def)
hence f3: "(xs ++ ys ++ zs) (bb x (xs ++ ys ++ zs)) = Some x"
using f2 by meson
{ assume "ys (bb x (xs ++ ys ++ zs)) \<noteq> None \<or> xs (bb x (xs ++ ys ++ zs)) \<noteq> Some x"
{ assume "ys (bb x (xs ++ ys ++ zs)) \<noteq> Some x \<and> (ys (bb x (xs ++ ys ++ zs)) \<noteq> None \<or> xs (bb x (xs ++ ys ++ zs)) \<noteq> Some x)"
hence "\<exists>b. zs b = Some x"
using f3 by auto
hence ?thesis
by (simp add: ran_def) }
hence ?thesis
using ran_def by fastforce }
thus ?thesis
using ran_def by fastforce
qed
lemma none_some_map: "None \<notin> S \<Longrightarrow> Some x \<in> S = (x \<in> the ` S)"
apply (rule iffI)
apply force
apply (subst in_these_eq[symmetric])
apply (clarsimp simp:Option.these_def)
apply (case_tac "\<exists>y. xa = Some y")
by clarsimp+
lemma none_some_map2: "the ` Set.filter (\<lambda>s. \<not> Option.is_none s) (range f) = ran f"
apply (rule subset_antisym)
apply clarsimp
apply (case_tac "f x", simp_all)
apply (simp add: ranI)
apply clarsimp
apply (subst none_some_map[symmetric])
apply clarsimp+
apply (erule ranE)
by (metis range_eqI)
lemma prop_map_of_prop:"\<lbrakk>\<forall>z \<in> set xs. P (g z); map_of (map (\<lambda>x. (f x, g x)) xs) y = Some a\<rbrakk> \<Longrightarrow> P a"
using map_of_SomeD by fastforce
lemma range_subsetI2: "\<forall>y\<in>A. \<exists>x. f x = y \<Longrightarrow> A \<subseteq> range f"
by fast
lemma insert_strip: "x \<noteq> y \<Longrightarrow> (x \<in> insert y S) = (x \<in> S)"
by simp
lemma dom_map_add: "dom ys = A \<Longrightarrow> dom (xs ++ ys) = A \<union> dom xs"
by simp
lemma set_compre_unwrap: "({x. P x} \<subseteq> S) = (\<forall>x. P x \<longrightarrow> x \<in> S)"
by blast
lemma map_add_same: "\<lbrakk>xs = ys; zs = ws\<rbrakk> \<Longrightarrow> xs ++ zs = ys ++ ws"
by simp
lemma map_add_find_left: "n k = None \<Longrightarrow> (m ++ n) k = m k"
by (simp add:map_add_def)
lemma map_length_split_triple:
"map (length \<circ> (\<lambda>(a, b, c). P a b c # map (f a b c) (Q a b c))) xs =
map (\<lambda>(a, b, c). 1 + length (Q a b c)) xs"
by fastforce
lemma sum_suc_triple: "(\<Sum>(a, b, c)\<leftarrow>xs. Suc (f a b c)) = length xs + (\<Sum>(a, b, c)\<leftarrow>xs. f a b c)"
by (induct xs; clarsimp)
lemma sum_enumerate: "(\<Sum>(a, b)\<leftarrow>enumerate n xs. P b) = (\<Sum>b\<leftarrow>xs. P b)"
by (induct xs arbitrary:n; clarsimp)
lemma dom_map_fold:"dom (fold op ++ (map (\<lambda>x. [f x \<mapsto> g x]) xs) ms) = dom ms \<union> set (map f xs)"
by (induct xs arbitrary:f g ms; clarsimp)
lemma list_ran_prop:"map_of (map (\<lambda>x. (f x, g x)) xs) i = Some t \<Longrightarrow> \<exists>x \<in> set xs. g x = t"
by (induct xs arbitrary:f g t i; clarsimp split:if_split_asm)
lemma in_set_enumerate_eq2:"(a, b) \<in> set (enumerate n xs) \<Longrightarrow> (b = xs ! (a - n))"
by (simp add: in_set_enumerate_eq)
lemma subset_eq_notI: "\<lbrakk>a\<in> B;a\<notin> C\<rbrakk> \<Longrightarrow> \<not> B \<subseteq> C"
by auto
lemma nat_divide_less_eq:
fixes b :: nat
shows "0 < c \<Longrightarrow> (b div c < a) = (b < a * c)"
using td_gal_lt by blast
end