-
Notifications
You must be signed in to change notification settings - Fork 0
/
Eisbach_Methods.thy
417 lines (303 loc) · 12.7 KB
/
Eisbach_Methods.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
(*
* Copyright 2014, NICTA
*
* This software may be distributed and modified according to the terms of
* the BSD 2-Clause license. Note that NO WARRANTY is provided.
* See "LICENSE_BSD2.txt" for details.
*
* @TAG(NICTA_BSD)
*)
(*
Methods and method combinators that are built using Eisbach.
*)
theory Eisbach_Methods
imports "subgoal_focus/Subgoal_Methods"
"~~/src/HOL/Eisbach/Eisbach_Tools"
Rule_By_Method
begin
section \<open>Debugging methods\<close>
method print_concl = (match conclusion in P for P \<Rightarrow> \<open>print_term P\<close>)
method_setup print_raw_goal = \<open>Scan.succeed (fn ctxt => fn facts =>
(fn (ctxt, st) => (Output.writeln (Thm.string_of_thm ctxt st);
Seq.make_results (Seq.single (ctxt, st)))))\<close>
ML \<open>fun method_evaluate text ctxt facts =
Method.NO_CONTEXT_TACTIC ctxt
(Method.evaluate_runtime text ctxt facts)\<close>
method_setup print_headgoal =
\<open>Scan.succeed (fn ctxt =>
fn _ => fn (ctxt', thm) =>
((SUBGOAL (fn (t,_) =>
(Output.writeln
(Pretty.string_of (Syntax.pretty_term ctxt t)); all_tac)) 1 thm);
(Seq.make_results (Seq.single (ctxt', thm)))))\<close>
section \<open>Simple Combinators\<close>
method_setup defer_tac = \<open>Scan.succeed (fn _ => SIMPLE_METHOD (defer_tac 1))\<close>
method_setup prefer_last = \<open>Scan.succeed (fn _ => SIMPLE_METHOD (PRIMITIVE (Thm.permute_prems 0 ~1)))\<close>
method_setup all =
\<open>Method.text_closure >> (fn m => fn ctxt => fn facts =>
let
fun tac i st' =
Goal.restrict i 1 st'
|> method_evaluate m ctxt facts
|> Seq.map (Goal.unrestrict i)
in SIMPLE_METHOD (ALLGOALS tac) facts end)
\<close>
method_setup determ =
\<open>Method.text_closure >> (fn m => fn ctxt => fn facts =>
let
fun tac st' = method_evaluate m ctxt facts st'
in SIMPLE_METHOD (DETERM tac) facts end)
\<close>
method_setup changed =
\<open>Method.text_closure >> (fn m => fn ctxt => fn facts =>
let
fun tac st' = method_evaluate m ctxt facts st'
in SIMPLE_METHOD (CHANGED tac) facts end)
\<close>
method_setup timeit =
\<open>Method.text_closure >> (fn m => fn ctxt => fn facts =>
let
fun timed_tac st seq = Seq.make (fn () => Option.map (apsnd (timed_tac st))
(timeit (fn () => (Seq.pull seq))));
fun tac st' =
timed_tac st' (method_evaluate m ctxt facts st');
in SIMPLE_METHOD tac [] end)
\<close>
method_setup timeout =
\<open>Scan.lift Parse.int -- Method.text_closure >> (fn (i,m) => fn ctxt => fn facts =>
let
fun str_of_goal th = Pretty.string_of (Goal_Display.pretty_goal ctxt th);
fun limit st f x = Timeout.apply (Time.fromSeconds i) f x
handle Timeout.TIMEOUT _ => error ("Method timed out:\n" ^ (str_of_goal st));
fun timed_tac st seq = Seq.make (limit st (fn () => Option.map (apsnd (timed_tac st))
(Seq.pull seq)));
fun tac st' =
timed_tac st' (method_evaluate m ctxt facts st');
in SIMPLE_METHOD tac [] end)
\<close>
method repeat_new methods m = (m ; (repeat_new \<open>m\<close>)?)
text \<open>The following @{text fails} and @{text succeeds} methods protect the goal from the effect
of a method, instead simply determining whether or not it can be applied to the current goal.
The @{text fails} method inverts success, only succeeding if the given method would fail.\<close>
method_setup fails =
\<open>Method.text_closure >> (fn m => fn ctxt => fn facts =>
let
fun fail_tac st' =
(case Seq.pull (method_evaluate m ctxt facts st') of
SOME _ => Seq.empty
| NONE => Seq.single st')
in SIMPLE_METHOD fail_tac facts end)
\<close>
method_setup succeeds =
\<open>Method.text_closure >> (fn m => fn ctxt => fn facts =>
let
fun can_tac st' =
(case Seq.pull (method_evaluate m ctxt facts st') of
SOME (st'',_) => Seq.single st'
| NONE => Seq.empty)
in SIMPLE_METHOD can_tac facts end)
\<close>
text \<open>This method wraps up the "focus" mechanic of match without actually doing any matching.
We need to consider whether or not there are any assumptions in the goal,
as premise matching fails if there are none.
If the @{text fails} method is removed here, then backtracking will produce
a set of invalid results, where only the conclusion is focused despite
the presence of subgoal premises.
\<close>
method focus_concl methods m =
((fails \<open>erule thin_rl\<close>, match conclusion in _ \<Rightarrow> \<open>m\<close>)
| match premises (local) in H:_ (multi) \<Rightarrow> \<open>m\<close>)
section \<open>Advanced combinators\<close>
subsection \<open>Protecting goal elements (assumptions or conclusion) from methods\<close>
context
begin
private definition "protect_concl x \<equiv> \<not> x"
private definition "protect_false \<equiv> False"
private lemma protect_start: "(protect_concl P \<Longrightarrow> protect_false) \<Longrightarrow> P"
by (simp add: protect_concl_def protect_false_def) (rule ccontr)
private lemma protect_end: "protect_concl P \<Longrightarrow> P \<Longrightarrow> protect_false"
by (simp add: protect_concl_def protect_false_def)
method only_asm methods m =
(match premises in H[thin]:_ (multi,cut) \<Rightarrow>
\<open>rule protect_start,
match premises in H'[thin]:"protect_concl _" \<Rightarrow>
\<open>insert H,m;rule protect_end[OF H']\<close>\<close>)
method only_concl methods m = (focus_concl \<open>m\<close>)
end
notepad begin
fix D C
assume DC:"D \<Longrightarrow> C"
have "D \<and> D \<Longrightarrow> C \<and> C"
apply (only_asm \<open>simp\<close>) -- "stash conclusion before applying method"
apply (only_concl \<open>simp add: DC\<close>) -- "hide premises from method"
by (rule DC)
end
subsection \<open>Safe subgoal folding (avoids expanding meta-conjuncts)\<close>
text \<open>Isabelle's goal mechanism wants to aggressively expand meta-conjunctions if they
are the top-level connective. This means that @{text fold_subgoals} will immediately
be unfolded if there are no common assumptions to lift over.
To avoid this we simply wrap conjunction inside of conjunction' to hide it
from the usual facilities.\<close>
context begin
definition
conjunction' :: "prop \<Rightarrow> prop \<Rightarrow> prop" (infixr "&^&" 2) where
"conjunction' A B \<equiv> (PROP A &&& PROP B)"
text \<open>In general the context antiquotation does not work in method definitions.
Here it is fine because Conv.top_sweep_conv is just over-specified to need a Proof.context
when anything would do.\<close>
method safe_meta_conjuncts =
raw_tactic
\<open>REPEAT_DETERM
(CHANGED_PROP
(PRIMITIVE
(Conv.gconv_rule ((Conv.top_sweep_conv (K (Conv.rewr_conv @{thm conjunction'_def[symmetric]})) @{context})) 1)))\<close>
method safe_fold_subgoals = (fold_subgoals (prefix), safe_meta_conjuncts)
lemma atomize_conj' [atomize]: "(A &^& B) == Trueprop (A & B)"
by (simp add: conjunction'_def, rule atomize_conj)
lemma context_conjunction'I:
"PROP P \<Longrightarrow> (PROP P \<Longrightarrow> PROP Q) \<Longrightarrow> PROP P &^& PROP Q"
apply (simp add: conjunction'_def)
apply (rule conjunctionI)
apply assumption
apply (erule meta_mp)
apply assumption
done
lemma conjunction'I:
"PROP P \<Longrightarrow> PROP Q \<Longrightarrow> PROP P &^& PROP Q"
by (rule context_conjunction'I; simp)
lemma conjunction'E:
assumes PQ: "PROP P &^& PROP Q"
assumes PQR: "PROP P \<Longrightarrow> PROP Q \<Longrightarrow> PROP R"
shows
"PROP R"
apply (rule PQR)
apply (rule PQ[simplified conjunction'_def, THEN conjunctionD1])
by (rule PQ[simplified conjunction'_def, THEN conjunctionD2])
end
notepad begin
fix D C E
assume DC: "D \<and> C"
have "D" "C \<and> C"
apply -
apply (safe_fold_subgoals, simp, atomize (full))
apply (rule DC)
done
end
section \<open>Utility methods\<close>
subsection \<open>Finding a goal based on successful application of a method\<close>
context begin
method_setup find_goal =
\<open>Method.text_closure >> (fn m => fn ctxt => fn facts =>
let
fun prefer_first i = SELECT_GOAL
(fn st' =>
(case Seq.pull (method_evaluate m ctxt facts st') of
SOME (st'',_) => Seq.single st''
| NONE => Seq.empty)) i THEN prefer_tac i
in SIMPLE_METHOD (FIRSTGOAL prefer_first) facts end)\<close>
end
notepad begin
fix A B
assume A: "A" and B: "B"
have "A" "A" "B"
apply (find_goal \<open>match conclusion in B \<Rightarrow> \<open>-\<close>\<close>)
apply (rule B)
by (rule A)+
have "A \<and> A" "A \<and> A" "B"
apply (find_goal \<open>fails \<open>simp\<close>\<close>) -- "find the first goal which cannot be simplified"
apply (rule B)
by (simp add: A)+
have "B" "A" "A \<and> A"
apply (find_goal \<open>succeeds \<open>simp\<close>\<close>) -- "find the first goal which can be simplified (without doing so)"
apply (rule conjI)
by (rule A B)+
end
subsection \<open>Remove redundant subgoals\<close>
text \<open>Tries to solve subgoals by assuming the others and then using the given method.
Backtracks over all possible re-orderings of the subgoals.\<close>
context begin
definition "protect (PROP P) \<equiv> P"
lemma protectE: "PROP protect P \<Longrightarrow> (PROP P \<Longrightarrow> PROP R) \<Longrightarrow> PROP R" by (simp add: protect_def)
private lemmas protect_thin = thin_rl[where V="PROP protect P" for P]
private lemma context_conjunction'I_protected:
assumes P: "PROP P"
assumes PQ: "PROP protect (PROP P) \<Longrightarrow> PROP Q"
shows
"PROP P &^& PROP Q"
apply (simp add: conjunction'_def)
apply (rule P)
apply (rule PQ)
apply (simp add: protect_def)
by (rule P)
private lemma conjunction'_sym: "PROP P &^& PROP Q \<Longrightarrow> PROP Q &^& PROP P"
apply (simp add: conjunction'_def)
apply (frule conjunctionD1)
apply (drule conjunctionD2)
apply (rule conjunctionI)
by assumption+
private lemmas context_conjuncts'I =
context_conjunction'I_protected
context_conjunction'I_protected[THEN conjunction'_sym]
method distinct_subgoals_strong methods m =
(safe_fold_subgoals,
(intro context_conjuncts'I;
(((elim protectE conjunction'E)?, solves \<open>m\<close>)
| (elim protect_thin)?)))?
end
method forward_solve methods fwd m =
(fwd, prefer_last, fold_subgoals, safe_meta_conjuncts, rule conjunction'I,
defer_tac, ((intro conjunction'I)?; solves \<open>m\<close>))[1]
method frule_solve methods m uses rule = (forward_solve \<open>frule rule\<close> \<open>m\<close>)
method drule_solve methods m uses rule = (forward_solve \<open>drule rule\<close> \<open>m\<close>)
notepad begin
{
fix A B C D E
assume ABCD: "A \<Longrightarrow> B \<Longrightarrow> C \<Longrightarrow> D"
assume ACD: "A \<Longrightarrow> C \<Longrightarrow> D"
assume DE: "D \<Longrightarrow> E"
assume B C
have "A \<Longrightarrow> D"
apply (frule_solve \<open>simp add: \<open>B\<close> \<open>C\<close>\<close> rule: ABCD)
apply (drule_solve \<open>simp add: \<open>B\<close> \<open>C\<close>\<close> rule: ACD)
apply (match premises in A \<Rightarrow> \<open>fail\<close> \<bar> _ \<Rightarrow> \<open>-\<close>)
apply assumption
done
}
end
notepad begin
{
fix A B C
assume A: "A"
have "A" "B \<Longrightarrow> A"
apply -
apply (distinct_subgoals_strong \<open>assumption\<close>)
by (rule A)
have "B \<Longrightarrow> A" "A"
by (distinct_subgoals_strong \<open>assumption\<close>, rule A) -- "backtracking required here"
}
{
fix A B C
assume B: "B"
assume BC: "B \<Longrightarrow> C" "B \<Longrightarrow> A"
have "A" "B \<longrightarrow> (A \<and> C)" "B"
apply (distinct_subgoals_strong \<open>simp\<close>, rule B) -- "backtracking required here"
by (simp add: BC)
}
end
section \<open>Attribute methods (for use with rule_by_method attributes)\<close>
method prove_prop_raw for P :: "prop" methods m =
(erule thin_rl, rule revcut_rl[of "PROP P"],
solves \<open>match conclusion in _ \<Rightarrow> \<open>m\<close>\<close>)
method prove_prop for P :: "prop" = (prove_prop_raw "PROP P" \<open>auto\<close>)
experiment begin
lemma assumes A[simp]:A shows A by (rule [[@\<open>prove_prop A\<close>]])
end
section \<open>Shortcuts for prove_prop. Note these are less efficient than using the raw syntax because
the facts are re-proven every time.\<close>
method ruleP for P :: "prop" = (catch \<open>rule [[@\<open>prove_prop "PROP P"\<close>]]\<close> \<open>fail\<close>)
method insertP for P :: "prop" = (catch \<open>insert [[@\<open>prove_prop "PROP P"\<close>]]\<close> \<open>fail\<close>)[1]
experiment begin
lemma assumes A[simp]:A shows A by (ruleP False | ruleP A)
lemma assumes A:A shows A by (ruleP "\<And>P. P \<Longrightarrow> P \<Longrightarrow> P", rule A, rule A)
end
end